The coupling of electronic and nuclear motion in polyatomic molecules is at the heart of attochemistry. The molecular properties, transient structures, and reaction mechanism of these many-body quantum objects are defined on the level of electrons and ions by molecular wave functions and their coherent superposition, respectively. In the present contribution, we monitor nonadiabatic quantum wave packet dynamics during molecular charge motion by reconstructing both the oscillatory charge density distribution and the characteristic time-dependent nuclear configuration coordinate from time-resolved Auger electron spectroscopic data recorded in previous studies on glycine molecules [Schwickert et al.
View Article and Find Full Text PDFIn the present contribution, we use x-rays to monitor charge-induced chemical dynamics in the photoionized amino acid glycine with femtosecond time resolution. The outgoing photoelectron leaves behind the cation in a coherent superposition of quantum mechanical eigenstates. Delayed x-ray pulses track the induced coherence through resonant x-ray absorption that induces Auger decay.
View Article and Find Full Text PDFHere, we use x-rays to create and probe quantum coherence in the photoionized amino acid glycine. The outgoing photoelectron leaves behind the cation in a coherent superposition of quantum mechanical eigenstates. Delayed x-ray pulses track the induced coherence through resonant x-ray absorption that induces Auger decay and by photoelectron emission from sequential double photoionization.
View Article and Find Full Text PDFShort-pulse metrology and dynamic studies in the extreme ultraviolet (XUV) spectral range greatly benefit from interferometric measurements. In this contribution a Michelson-type all-reflective split-and-delay autocorrelator operating in a quasi amplitude splitting mode is presented. The autocorrelator works under a grazing incidence angle in a broad spectral range (10 nm - 1 μm) providing collinear propagation of both pulse replicas and thus a constant phase difference across the beam profile.
View Article and Find Full Text PDFCollinear double-pulse seeding of the High-Gain Harmonic Generation (HGHG) process in a free-electron laser (FEL) is a promising approach to facilitate various coherent nonlinear spectroscopy schemes in the extreme ultraviolet (XUV) spectral range. However, in collinear arrangements using a single nonlinear medium, temporally overlapping seed pulses may introduce nonlinear mixing signals that compromise the experiment at short time delays. Here, we investigate these effects in detail by extending the analysis described in a recent publication (Wituschek et al.
View Article and Find Full Text PDFThe recent development of ultrafast extreme ultraviolet (XUV) coherent light sources bears great potential for a better understanding of the structure and dynamics of matter. Promising routes are advanced coherent control and nonlinear spectroscopy schemes in the XUV energy range, yielding unprecedented spatial and temporal resolution. However, their implementation has been hampered by the experimental challenge of generating XUV pulse sequences with precisely controlled timing and phase properties.
View Article and Find Full Text PDFWe present the design of an extreme ultraviolet (XUV) pulse shaper relying on reflective optics. The instrument will allow tailoring of the time-frequency spectrum of femtosecond pulses generated by seeded free-electron lasers (FEL) and high-harmonic generation (HHG) sources down to a central wavelength of ~15 nm. The device is based on the geometry of a 4f grating compressor that is a standard concept in ultrafast laser science and technology.
View Article and Find Full Text PDFRev Sci Instrum
February 2018
Light-phase-sensitive techniques, such as coherent multidimensional spectroscopy, are well-established in a broad spectral range, already spanning from radio-frequencies in nuclear magnetic resonance spectroscopy to visible and ultraviolet wavelengths in nonlinear optics with table-top lasers. In these cases, the ability to tailor the phases of electromagnetic waves with high precision is essential. Here we achieve phase control of extreme-ultraviolet pulses from a free-electron laser (FEL) on the attosecond timescale in a Michelson-type all-reflective interferometric autocorrelator.
View Article and Find Full Text PDFUnraveling and controlling chemical dynamics requires techniques to image structural changes of molecules with femtosecond temporal and picometer spatial resolution. Ultrashort-pulse x-ray free-electron lasers have significantly advanced the field by enabling advanced pump-probe schemes. There is an increasing interest in using table-top photon sources enabled by high-harmonic generation of ultrashort-pulse lasers for such studies.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2014
We investigate subpicosecond dynamics of warm dense hydrogen at the XUV free-electron laser facility (FLASH) at DESY (Hamburg). Ultrafast impulsive electron heating is initiated by a ≤ 300-fs short x-ray burst of 92-eV photon energy. A second pulse probes the sample via x-ray scattering at jitter-free variable time delay.
View Article and Find Full Text PDFHighly charged ions are formed in the center of composite clusters by strong free-electron laser pulses and they emit fluorescence on a femtosecond time scale before competing recombination leads to neutralization of the nanoplasma core. In contrast to mass spectrometry that detects remnants of the interaction, fluorescence in the extreme ultraviolet spectral range provides fingerprints of transient states of high energy density matter. Spectra from clusters consisting of a xenon core and a surrounding argon shell show that a small fraction of the fluorescence signal comes from multiply charged xenon ions in the cluster core.
View Article and Find Full Text PDFArgon gas at a high pressure (∼80 bar) has been expanded using a miniaturized pulsed valve at room temperature, producing a supersonic beam of cold, large argon droplets. Atoms of silver are subsequently embedded into the droplet using the pick-up technique. The resulting Ag(n)Ar(droplet) distribution was analyzed using multiphoton laser ionization time-of-flight mass spectrometry.
View Article and Find Full Text PDFThe generation of highly charged Xe(q+) ions up to q=24 is observed in Xe clusters embedded in helium nanodroplets and exposed to intense femtosecond laser pulses (λ=800 nm). Laser intensity resolved measurements show that the high-q ion generation starts at an unexpectedly low threshold intensity of about 10(14) W/cm2. Above threshold, the Xe ion charge spectrum saturates quickly and changes only weakly for higher laser intensities.
View Article and Find Full Text PDFBy use of high intensity XUV radiation from the FLASH free-electron laser at DESY, we have created highly excited exotic states of matter in solid-density aluminum samples. The XUV intensity is sufficiently high to excite an inner-shell electron from a large fraction of the atoms in the focal region. We show that soft-x-ray emission spectroscopy measurements reveal the electronic temperature and density of this highly excited system immediately after the excitation pulse, with detailed calculations of the electronic structure, based on finite-temperature density functional theory, in good agreement with the experimental results.
View Article and Find Full Text PDFWe investigate ultrafast (fs) electron dynamics in a liquid hydrogen sample, isochorically and volumetrically heated to a moderately coupled plasma state. Thomson scattering measurements using 91.8 eV photons from the free-electron laser in Hamburg (FLASH at DESY) show that the hydrogen plasma has been driven to a nonthermal state with an electron temperature of 13 eV and an ion temperature below 0.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2008
We report the creation of solid-density aluminum plasma using free-electron laser (FEL) radiation at 13.5nm wavelength. Ultrashort pulses were focused on a bulk Al target, yielding an intensity of 2x10;{14}Wcm;{2} .
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2007
We review the strong field (10(13)-10(16) W cm(-2)) laser excitation of metal clusters (Cd(N), Ag(N) and Pb(N)) embedded in He nanodroplets. Plasmon enhanced ionization obtained by stretching the laser pulses to several hundreds of femtoseconds or by using dual pulses with a suitable optical delay leads to a Coulomb explosion of highly charged atomic ions. The charging dynamics can be well described by corresponding semiclassical Vlasov simulations.
View Article and Find Full Text PDFMetal clusters embedded in ultracold helium nanodroplets are exposed to femtosecond laser pulses with intensities of 10(13)-10(14) W/cm2. The influence of the matrix on the ionization and fragmentation dynamics is studied by pump-probe time-of-flight mass spectrometry. Special attention is paid to the generation of helium snowballs around positive metal ions (Me(z+)He(N), z=1,2).
View Article and Find Full Text PDFPhotoelectron spectra of neutral silver trimers, grown in ultracold helium nanodroplets, are recorded after ionization with laser pulses via a strong optical resonance of this species. Varying the photon energy reveals that direct vertical two-photon ionization is hindered by a rapid relaxation into the lower edge of a long-living excited state manifold. An analysis of the ionization threshold of the embedded trimer yields an ionization potential of 5.
View Article and Find Full Text PDFNeutral silver clusters Ag(N) are grown in ultracold helium nanodroplets. By exploiting a strong absorption resonance recently found for Ag8, first photoelectron spectra of this neutral species are recorded. Variation of the laser photon energy reveals that direct vertical two-photon ionization is hindered by rapid relaxation into the lower edge of a long-living excited state manifold.
View Article and Find Full Text PDF