The analysis of the microstructure of supramolecular copolymers is difficult because of their dynamic character. Here, benzene-1,3,5-tricarboxamide (BTA) co-assemblies are analysed by ion mobility - mass spectrometry (IM-MS) to reveal the presence of various sequences. For example, the IM-MS mobilogram for hexamers composed of 4 units from a first monomer and 2 units from a second monomer is a broad distribution due to the presence of 9 possible isomeric sequences, which can be sorted out based on calculated collision cross-sections.
View Article and Find Full Text PDFThe human sulfatase HSulf-2 is one of only two known endosulfatases that play a decisive role in modulating the binding properties of heparan sulfate proteoglycans on the cell surface and in the extracellular matrix. Recently, HSulf-2 was shown to exhibit an unusual post-translational modification consisting of a sulfated glycosaminoglycan chain. This study describes the structural characterization of this glycosaminoglycan (GAG) and provides new data on its impact on the catalytic properties of HSulf-2.
View Article and Find Full Text PDFCyclic oligosaccharides are well known to interact with various metals, able to form supramolecular complexes with distinct sizes and shapes. However, the presence of various isomers in a sample, including positional isomers and conformers, can significantly impact molecular recognition, encapsulation ability and chemical reactivity. Therefore, it is crucial to have tools for deep samples probing and correlation establishments.
View Article and Find Full Text PDFIntroduction: Tele-expertise in dermatology represents an opportunity to change medical practice in response to the need for cost savings in the health sector. The aim of this study was to evaluate the medical activities of the pilot phase of the tele-expertise project in Togo.
Method: A cross-sectional study was conducted in October 2020 on the 20 sites of the pilot phase.
In this study, the size and shape of supramolecular assemblies between cyclo-oligosaccharides and proton, ammonium or a series of alkali metals by electrospray coupled to trapped ion mobility-mass spectrometry (ESI-TIMS) have investigated. Native cyclodextrins (CD) were selected as models, and collision cross section (CCS) values were deducted for the main positive singly and doubly charged species. Experimental CCS values were in good agreement with those obtained from molecular modeling.
View Article and Find Full Text PDFA robust strategy is reported to build perfectly monodisperse star polycations combining a trehalose-based cyclooligosaccharide (cyclotrehalan, CT) central core onto which oligoethyleneimine radial arms are installed. The architectural perfection of the compounds is demonstrated by a variety of physicochemical techniques, including NMR, MS, DLS, TEM, and GPC. Key to the strategy is the possibility of customizing the cavity size of the macrocyclic platform to enable/prevent the inclusion of adamantane motifs.
View Article and Find Full Text PDFHalf-sandwich complexes of iridium(III) are currently being developed as anticancer drug candidates. In this context, we introduce for which the C^N chelating phenyloxazoline ligand carries a fluorescent and lipophilic BODIPY reporter group, designed for intracellular tracking and hydrophobic compartment tropism. High-resolution analysis of cells cultured with showed that it quickly permeates the plasma membrane and accumulates in the mitochondria and endoplasmic reticulum (ER), generating ER stress, dispersal of the Golgi apparatus, cell proliferation arrest and apoptotic cell death.
View Article and Find Full Text PDFInstilling segregated cationic and lipophilic domains with an angular disposition in a trehalose-based trifaceted macrocyclic scaffold allows engineering patchy molecular nanoparticles leveraging directional interactions that emulate those controlling self-assembling processes in viral capsids. The resulting trilobular amphiphilic derivatives, featuring a Mickey Mouse architecture, can electrostatically interact with plasmid DNA (pDNA) and further engage in hydrophobic contacts to promote condensation into transfectious nanocomplexes. Notably, the topology and internal structure of the cyclooligosaccharide/pDNA co-assemblies can be molded by fine-tuning the valency and characteristics of the cationic and lipophilic patches, which strongly impacts the transfection efficacy in vitro and in vivo.
View Article and Find Full Text PDFCyclodextrin poly-functionalization has fueled progress in their use in multiple applications such as enzyme mimicry, but also in the polymer sciences, luminescence, as sensors or for biomedical applications. However, regioselective access to a given pattern of functions on β-cyclodextrin is still very limited. We uncover a new orienting group, the thioacetate, that expands the toolbox available for cyclodextrin poly-hetero-functionalization using diisobutylaluminum hydride (DIBAL-H) promoted debenzylation.
View Article and Find Full Text PDFPrecise characterization of the hydrogen bond network present in discrete self-assemblies of benzene-1,3,5-tricarboxamide monomers derived from amino-esters (ester BTAs) is crucial for the construction of elaborated functional co-assemblies. For all ester BTA dimeric structures previously reported, ester carbonyls in the side chain acted as hydrogen bond acceptors, yielding well-defined dimers stabilized by six hydrogen bonds. The ester BTA monomer derived from glycine (BTA Gly) shows a markedly different self-assembly behaviour.
View Article and Find Full Text PDFCyclodextrins (CDs) are cyclic oligosaccharides mainly composed of six, seven, and eight glucose units, so-called α-, β-, and γ-CDs, respectively. They own a very particular molecular structure exhibiting hydrophilic features thanks to primary and secondary rims and delimiting a hydrophobic internal cavity. The latter can encapsulate organic compounds, but the former can form supramolecular complexes by hydrogen-bonding or electrostatic interactions.
View Article and Find Full Text PDFRecently, a novel CS/DS 4-O-endosulfatase was identified from a marine bacterium and its catalytic mechanism was investigated further (Wang, W., et. al (2015) J.
View Article and Find Full Text PDFCarbohydrates play a myriad of critical roles as key intermediaries for energy storage, cell wall constituents, or also fuel for organisms. The deciphering of multiple structural isomers based on the monosaccharides composition (stereoisomers), the type of glycosidic linkages (connectivity) and the anomeric configuration (α and β), remains a major analytical challenging task. The possibility to discriminate 13 underivatized isomeric trisaccharides were reported using electrospray ionization coupled to trapped ion mobility spectrometry (ESI-TIMS).
View Article and Find Full Text PDFChlorogenic (CA) and rosmarinic (RA) acids are two natural bioactive hydroxycinnamic acids whose antioxidant properties can be modulated by the chelation of metal ions. In this work, the interactions of these two carboxylic phenols with calcium ions and the impact of such interactions on their antioxidant activity were investigated. UV-Vis absorbance, mass spectroscopy and H and C liquid NMR were used to identify complexes formed by CA and RA with calcium.
View Article and Find Full Text PDFThe blood - brain barrier (BBB) prevents the majority of therapeutic drugs from reaching the brain following intravenous or oral administration. In this context, polymer nanoparticles are a promising alternative to bypass the BBB and carry drugs to brain cells. Amphiphilic cyclodextrins can form self-assemblies whose nanoparticles have a 100-nm-diameter range and are thus able to encapsulate drugs for controlled release.
View Article and Find Full Text PDFThe antipsychotic drug chlorpromazine (CPZ) has potential for the treatment of acute myeloid leukemia, if central nervous system side-effects resulting from its passage through the blood-brain barrier can be prevented. A robust drug delivery system for repurposed CPZ would be drug-in-cyclodextrin-in-liposome that would redirect the drug away from the brain while avoiding premature release in the circulation. As a first step, CPZ complexation with cyclodextrin (CD) has been studied.
View Article and Find Full Text PDFIn wildtype mice, the pigment granules in the retinal pigment epithelium aggregate in the dark towards Bruch's membrane and disperse towards the photoreceptors in the light. We have developed a repeatable method amenable for quantifying pigment position in the RPE from wild type mice by estimating the population density of pigment granules, or pigment density, within 4 μm areas in the basal part of cells examined by transmission electron microscopy. To measure pigment position, 2 μm × 2 μm squares were aligned along the apical ends of the basal microvilli.
View Article and Find Full Text PDFA biosensor device for the detection and characterization of protein-glycosaminoglycan interactions is being actively sought and constitutes the key to identifying specific carbohydrate ligands, an important issue in glycoscience. Mass spectrometry (MS) hyphenated methods are promising approaches for carbohydrate enrichment and subsequent structural characterization. In the study herein, we report the analysis of interactions between the glycosaminoglycans (GAGs) heparin (HP) and heparan sulfate (HS) and various cytokines by coupling surface plasmon resonance imaging (SPRi) for thermodynamic analysis method and MALDI-TOF MS for structural determination.
View Article and Find Full Text PDFThe well-established oxidative addition-reductive elimination pathway is the most followed one in transition metal-catalysed cross-coupling reactions. While readily occurring with a series of transition metals, gold(I) complexes have shown some reluctance to undergo oxidative addition unless special sets of ligands on gold(I), reagents or reaction conditions are used. Here we show that under visible-light irradiation, an iridium photocatalyst triggers-via triplet sensitization-the oxidative addition of an alkynyl iodide onto a vinylgold(I) intermediate to deliver C(sp)-C(sp) coupling products after reductive elimination.
View Article and Find Full Text PDFThe homeostasis disruption of d-glucose causes diabetes, a dramatic chronic disease worldwide. Type 1 diabetes is a successfully treatable form, where blood d-glucose is regulated by insulin treatment. In contrast type 2 diabetes, the non-insulin dependent kind, is problematic.
View Article and Find Full Text PDFLarge-ring cyclodextrins (CD) are cyclic glucans composed of 9 or more α-1,4-linked glucose units. They are minor side products of bacterial glucanotransferases (CGTases, EC 2.4.
View Article and Find Full Text PDFThe presence of a doubly-linked naphthylene clip at the -2 and -3 positions in the secondary ring of β-cyclodextrin (βCD) derivatives promoted their self-assembly into head-to-head supramolecular dimers in which the aromatic modules act either as cavity extension walls (if the naphthalene moiety is 1,8-disubstituted) or as folding screens that separate the individual βCD units (if 2,3-disubstituted). Dimer architecture is governed by the conformational properties of the monomer constituents, as determined by NMR, fluorescence, circular dichroism, and computational techniques. In a second supramolecular organization level, the topology of the assembly directs host-guest interactions and, reciprocally, guest inclusion impacts the stability of the supramolecular edifice.
View Article and Find Full Text PDF