For the interacting with real world, augmented reality devices need lightweight yet reliable methods for recognition and identification of physical objects. In that regard, promising possibilities are offered by supporting computer vision with 2D barcode tags. These tags, as high contrast and visually well-defined objects, can be used for finding fiducial points in the space or to identify physical items.
View Article and Find Full Text PDFOptical motion capture systems are prone to errors connected to marker recognition (e.g., occlusion, leaving the scene, or mislabeling).
View Article and Find Full Text PDFThe goal of the WrightBroS project is to design a system supporting the training of pilots in a flight simulator. The desired software should work on smart glasses supplementing the visual information with augmented reality data, displaying, for instance, additional training information or descriptions of visible devices in real time. Therefore, the rapid recognition of observed objects and their exact positioning is crucial for successful deployment.
View Article and Find Full Text PDFSensors (Basel)
September 2021
Optical motion capture is a mature contemporary technique for the acquisition of motion data; alas, it is non-error-free. Due to technical limitations and occlusions of markers, gaps might occur in such recordings. The article reviews various neural network architectures applied to the gap-filling problem in motion capture sequences within the FBM framework providing a representation of body kinematic structure.
View Article and Find Full Text PDFOptical motion capture systems are state-of-the-art in motion acquisition; however, like any measurement system they are not error-free: noise is their intrinsic feature. The works so far mostly employ a simple noise model, expressing the uncertainty as a simple variance. In the work, we demonstrate that it might be not sufficient and we prove the existence of several types of noise and demonstrate how to quantify them using Allan variance.
View Article and Find Full Text PDFProper calibration of eye movement signal registered by an eye tracker seems to be one of the main challenges in popularizing eye trackers as yet another user-input device. Classic calibration methods taking time and imposing unnatural behavior on eyes must be replaced by intelligent methods that are able to calibrate the signal without conscious cooperation by the user. Such an implicit calibration requires some knowledge about the stimulus a user is looking at and takes into account this information to predict probable gaze targets.
View Article and Find Full Text PDFThe paper describes a scalable, wearable multi-sensor system for motion capture based on inertial measurement units (IMUs). Such a unit is composed of accelerometer, gyroscope and magnetometer. The final quality of an obtained motion arises from all the individual parts of the described system.
View Article and Find Full Text PDF