Publications by authors named "Przemyslaw L Wencel"

Oxidative stress and disturbances of mitochondrial function in the brain play a crucial role in Alzheimer's disease (AD). However, little is known about the dynamics of these changes in different parts of the brain at the early stage of AD. This study aimed to determine the expression of genes encoding superoxide dismutases (SOD1, SOD2), poly(ADP-ribose) polymerases (PARPs) and sirtuins (SIRTs).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a multi-factorial illness that leads to progressive cognitive impairment. A glutamatergic system dysfunction has been reported to be implicated in the pathomechanism of AD. Therefore, in the current study we characterized the transcriptional profile of glutamate-related genes in transgenic AbPP V717I (TgAD) and sporadic (SAD, streptozotocin-induced) models of AD.

View Article and Find Full Text PDF

Alzheimer's disease (AD) induces time-dependent changes in sphingolipid metabolism, which may affect transcription regulation and neuronal phenotype. We, therefore, analyzed the influence of age, amyloid β precursor protein (AβPP), and the clinically approved, bioavailable sphingosine-1-phosphate receptor modulator fingolimod (FTY720) on the expression of synaptic proteins. RNA was isolated, reverse-transcribed, and subjected to real-time PCR.

View Article and Find Full Text PDF

The imbalance in sphingolipid signaling may be critically linked to the upstream events in the neurodegenerative cascade of Alzheimer's disease (AD). We analyzed the influence of mutant (V717I) amyloid β precursor protein (AβPP) transgene on sphingolipid metabolism enzymes in mouse hippocampus. At 3 months of age AβPP/Aβ presence upregulated enzymes of ceramide turnover on the salvage pathway: ceramide synthases (CERS2, CERS4, CERS6) and also ceramidase ACER3.

View Article and Find Full Text PDF

A growing body of evidence indicates that pathological forms of amyloid beta (Aβ) peptide contribute to neuronal degeneration and synaptic loss in Alzheimer's disease (AD). In this study, we investigated the impact of exogenous Aβ oligomers (AβO) and endogenously liberated Aβ peptides on transcription of genes for anti-oxidative and mitochondria-related proteins in cell lines (neuronal SH-SY5Y and microglial BV2) and in brain cortex of transgenic AD (Tg-AD) mice, respectively. Our results demonstrated significant AβO-evoked changes in transcription of genes in SH-SY5Y cells, where AβO enhanced expression of Sod1, Cat, mt-Nd1, Bcl2, and attenuated Sirt5, Sod2 and Sdha.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by alterations of amyloid precursor protein (APP) metabolism, accumulation of amyloid  peptides (A), hyperphosphorylation of Tau proteins and also by sphingolipids disturbances. These changes lead to oxidative stress, mitochondria dysfunction, synaptic loss and neuro-inflammation. It is known that A may promote ceramides formation and reversely, ceramides could stimulate A peptides release.

View Article and Find Full Text PDF

Sphingolipid signaling disturbances correlate with Alzheimer's disease (AD) progression. We examined the influence of FTY720/fingolimod, a sphingosine analog and sphingosine-1-phosphate (S1P) receptor modulator, on the expression of sphingolipid metabolism and signaling genes in a mouse transgenic AD model. Our results demonstrated that AβPP (V717I) transgene led with age to reduced mRNA expression of S1P receptors (S1PRs), sphingosine kinase SPHK2, ceramide kinase CERK, and the anti-apoptotic Bcl2 in the cerebral cortex and hippocampus, suggesting a pro-apoptotic shift in 12-month old mice.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the release of amyloid beta peptides (Aβ) in the form of monomers/oligomers which may lead to oxidative stress, mitochondria dysfunction, synaptic loss, neuroinflammation and, in consequence, to overactivation of poly(ADP-ribose) polymerase-1 (PARP-1). However, Aβ peptides are also released in the brain ischemia, traumatic injury and in inflammatory response. PARP-1 is suggested to be a promising target in therapy of neurodegenerative disorders.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerases (PARPs) and sirtuins (SIRTs) are involved in the regulation of cell metabolism, transcription, and DNA repair. Alterations of these enzymes may play a crucial role in Alzheimer's disease (AD). Our previous results indicated that amyloid beta (Aβ) peptides and inflammation led to activation of PARP1 and cell death.

View Article and Find Full Text PDF