Publications by authors named "Przemyslaw Karpowicz"

Degradation of misfolded, redundant and oxidatively damaged proteins constitutes one of the cellular processes which are influenced by the 20S proteasome. However, its activity is generally thought to decrease with age which leads to the gradual accumulation of abnormal proteins in cells and their subsequent aggregation. Therefore, increasing proteasomal degradation constitutes a promising strategy to delay the onset of various age-related diseases, including neurodegenerative disorders.

View Article and Find Full Text PDF

The proteasome has key roles in neuronal proteostasis, including the removal of misfolded and oxidized proteins, presynaptic protein turnover, and synaptic efficacy and plasticity. Proteasome dysfunction is a prominent feature of Alzheimer's disease (AD). We show that prevention of proteasome dysfunction by genetic manipulation delays mortality, cell death, and cognitive deficits in fly and cell culture AD models.

View Article and Find Full Text PDF

This study evaluated the use of novel peptides derived from platelet-derived growth factor (PDGF-BB) as potential wound healing stimulants. One of the compounds (named PDGF2) was subjected for further research after cytotoxicity and proliferation assays on human skin cells. Further investigation included evaluation of: migration and chemotaxis of skin cells, immunological and allergic safety, the transcriptional analyses of adipose-derived stem cells (ASCs) and dermal fibroblasts stimulated with PDGF2, and the use of dorsal skin wound injury model to evaluate the effect of wound healing in mice.

View Article and Find Full Text PDF

The proteasome is a pivotal element of controlled proteolysis, responsible for the catabolic arm of proteostasis. By inducing apoptosis, small molecule inhibitors of proteasome peptidolytic activities are successfully utilized in treatment of blood cancers. However, the clinical potential of proteasome activation remains relatively unexplored.

View Article and Find Full Text PDF

Proline- and arginine-rich peptide PR11 is an allosteric inhibitor of 20S proteasome. We modified its sequence inter alia by introducing HbYX, RYX, or RHbX C-terminal extensions (Hb, hydrophobic moiety; R, arginine; Y, tyrosine; X, any residue). Consequently, we were able to improve inhibitory potency or to convert inhibitors into strong activators: the former with an aromatic penultimate Hb residue and the latter with the HbYX motif.

View Article and Find Full Text PDF

Proteasomes are responsible for protein turnover in eukaryotic cells, degrading short-lived species but also removing improperly folded or oxidatively damaged ones. Dysfunction of a proteasome results in gradual accumulation of misfolded/damaged proteins, leading to their aggregation. It has been postulated that proteasome activators may facilitate removal of such aggregation-prone proteins and thus prevent development of neurodegenerative disorders.

View Article and Find Full Text PDF

α1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy.

View Article and Find Full Text PDF

The proteasome is a giant protease responsible for degradation of the majority of cytosolic proteins. Competitive inhibitors of the proteasome are used against aggressive blood cancers. However, broadening the use of proteasome-targeting drugs requires new mechanistic approaches to the enzyme's inhibition.

View Article and Find Full Text PDF

Proteasome is a 'proteolytic factory' that constitutes an essential part of the ubiquitin-proteasome pathway. The involvement of proteasome in regulation of all major aspects of cellular physiology makes it an attractive drug target. So far, only inhibitors of the proteasome entered the clinic as anti-cancer drugs.

View Article and Find Full Text PDF

The giant proteolytic factory called the proteasome came a long way from a biochemical curio to a major regulator of cellular physiology and a renowned drug target within the ubiquitin proteasome pathway (UPP). Thanks to availability of highly specific inhibitors of the proteasome, in less than twenty years it was possible to identify major transcription factors, cyclins, and products of oncogenes as crucial substrates for the UPP. Nine years passed since the FDA speedily approved bortezomib, the inhibitor of proteasome, for treatment of multiple myeloma.

View Article and Find Full Text PDF

Recently, we presented a convenient method combining a deuterium-hydrogen exchange and electrospray mass spectrometry for studying high-pressure denaturation of proteins (Stefanowicz et al., Biosci Rep 2009; 30:91-99). Here, we present results of pressure-induced denaturation studies of an amyloidogenic protein-the wild-type human cystatin C (hCC) and its single-point mutants, in which Val57 residue from the hinge region was substituted by Asn, Asp or Pro, respectively.

View Article and Find Full Text PDF