Background: Our recent studies showed that prolonged administration of novel atypical antipsychotics affected the expression and activity of cytochrome P450 (CYP), as demonstrated in vitro on human hepatocytes and in vivo on the rat liver. The aim of the present work was to study the effect of repeated treatment with asenapine, iloperidone, and lurasidone on the expression of transcription factors regulating CYP drug-metabolizing enzymes in rat liver.
Methods: The hepatic mRNA (qRT-PCR) and protein levels (Western blotting) of aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor (PPARγ) were measured in male Wistar rats after 2 week-treatment with asenapine, iloperidone or lurasidone.
Lurasidone is a novel atypical antipsychotic drug acting on dopaminergic, serotonergic and noradrenergic receptors; it is applied for the long-term treatment of schizophrenia and depression in patients with bipolar disorders. We aimed at performing a comparative study on the influence of chronic treatment with lurasidone on the expression of cytochrome P450 enzymes in the liver and in peripheral blood lymphocytes, and to evaluate the relationship between changes in the expression of CYP enzymes in the two experimental models. The obtained results show a fairly similar expression pattern of the main CYP enzymes in the rat livers and lymphocytes, and they indicate that in the liver, lurasidone exerts an inhibitory effect on the activity, protein and mRNA levels of CYP2B1/2 (not mRNA), CYP2C11 and CYP2E1, while in the case of CYP3A1 and CYP3A2, it causes enzyme induction.
View Article and Find Full Text PDFBackground: Liver cytochrome P450 (CYP) greatly contributes to the metabolism of endogenous substances and drugs. Recent studies have demonstrated that CYP expression in the liver is controlled by the central nervous system via hormonal pathways. In particular, the expression of hepatic CYPs is negatively regulated by the brain serotoninergic system.
View Article and Find Full Text PDFThe CYP2D enzymes of the cytochrome P450 superfamily play an important role in psychopharmacology, since they are engaged in the metabolism of psychotropic drugs and endogenous neuroactive substrates, which mediate brain neurotransmission and the therapeutic action of those drugs. The aim of this work was to study the effect of short- and long-term treatment with the selective antagonist of the GluN2B subunit of the NMDA receptor, the compound CP-101,606, which possesses antidepressant properties, on CYP2D expression and activity in the liver and brain of male rats. The presented work shows time-, organ- and brain-structure-dependent effects of 5-day and 3-week treatment with CP-101,606 on CYP2D.
View Article and Find Full Text PDFThe aim of this work was to study the effect of prolonged lurasidone administration on the cytochrome 2D (CYP2D) expression and activity in the rat liver and selected brain structures involved in the therapeutic or side effects of this neuroleptic. Male Wistar rats received lurasidone (1 mg/kg ip.) for two weeks.
View Article and Find Full Text PDFBackground: Our earlier studies have shown that the brain noradrenergic system regulates cytochrome P450 (CYP) in rat liver via neuroendocrine mechanism. In the present work, a comparative study on the effect of intraperitoneal administration of the noradrenergic neurotoxin DSP-4 and the knockout of noradrenaline transporter (NET-KO) on the CYP3A in the liver of male and female mice was performed.
Methods: The experiments were conducted on C57BL/6J WT and NET male/female mice.
Cytochrome P450 (CYP) plays an important role in psychopharmacology. While liver CYP enzymes are responsible for the biotransformation of psychotropic drugs, brain CYP enzymes are involved in the local metabolism of these drugs and endogenous neuroactive substances, such as neurosteroids, and in alternative pathways of neurotransmitter biosynthesis including dopamine and serotonin. Recent studies have revealed a relation between the brain nervous system and cytochrome P450, indicating that CYP enzymes metabolize endogenous neuroactive substances in the brain, while the brain nervous system is engaged in the central neuroendocrine and neuroimmune regulation of cytochrome P450 in the liver.
View Article and Find Full Text PDFenzymes engage in the synthesis of endogenous neuroactive substances (dopamine, serotonin) and in the metabolism of neurosteroids. The present work investigates the effect of iloperidone on CYP2D enzyme expression and activity in rat brains and livers. Iloperidone exerted a weak direct inhibitory effect on CYP2D activity in vitro in the liver and brain microsomes (K = 11.
View Article and Find Full Text PDFAmong the enzymes that support brain metabolism, cytochrome P450 (CYP) enzymes occupy an important place. These enzymes catalyze the biotransformation pathways of neuroactive endogenous substrates (neurosteroids, neurotransmitters) and are necessary for the detoxification processes. The aim of the present study was to assess changes in the CYP2D activity and protein level during the aging process and as a result of serotonin deficiency in the female brain.
View Article and Find Full Text PDFRecent research indicates that selective NMDA receptor GluN2B subunit antagonists may become useful for the treatment of major depressive disorders. We aimed to examine in parallel the effect of the selective NMDA receptor GluN2B subunit antagonist CP-101,606 on the pituitary/serum hormone levels and on the regulation of cytochrome P450 in rat liver. CP-101,606 (20 mg/kg ip.
View Article and Find Full Text PDFNeuroleptics have to be used for a long time to produce a therapeutic effect. Cytochrome P450 2D (CYP2D) enzymes mediate alternative pathways of neurotransmitter synthesis (i.e.
View Article and Find Full Text PDFIn order to achieve a desired therapeutic effect in schizophrenia patients and to maintain their mental wellbeing, pharmacological therapy needs to be continued for a long time, usually from the onset of symptoms and for the rest of the patients' lives. The aim of our present research is to find out the in vivo effect of chronic treatment with atypical neuroleptic iloperidone on the expression and activity of cytochrome P450 (CYP) in rat liver. Male Wistar rats received a once-daily intraperitoneal injection of iloperidone (1 mg/kg) for a period of two weeks.
View Article and Find Full Text PDFTherapy of schizophrenia requires long-term treatment with a relevant antipsychotic drug to achieve a therapeutic effect. The aim of the present study was to investigate the influence of prolonged treatment with the atypical neuroleptic asenapine on the expression and activity of rat cytochrome P450 (CYP) in the liver. The experiment was carried out on male Wistar rats.
View Article and Find Full Text PDFAntipsychotics are often used in combination with other psychotropic drugs to treat a variety of psychiatric disorders, as well as in combination with other drugs taken by patients with co-morbidities. When these drugs are combined, the potential for drug-drug interaction increases, leading to side-effects, in addition to the predicted increase in effectiveness. The present study aimed at examining the effects of the three atypical neuroleptics asenapine, lurasidone and iloperidone on cytochrome P450 (CYP) expression in the human liver.
View Article and Find Full Text PDFBackground: Cytochrome P450 (CYP) enzymes are involved in the metabolism of many important endogenous substrates (steroids, melatonin), drugs and toxic xenobiotics. Their induction accelerates drug metabolism and elimination. The present study aimed at examining the inducing abilities of two antipsychotic drugs levomepromazine and clozapine for the main CYPs.
View Article and Find Full Text PDFBackground: The present study aimed at examining the inhibitory effect of two atypical neuroleptics iloperidone and lurasidone on the main human cytochrome P450 (CYP) enzymes in pooled human liver microsomes and cDNA-expressed CYP enzymes (supersomes).
Methods: The activity of these enzymes was determined by the following CYP-specific reactions: caffeine 3-N-demethylation/CYP1A2, diclofenac 4'-hydroxylation/CYP2C9, perazine N-demethylation/CYP2C19, bufuralol 1'-hydroxylation/CYP2D6 and testosterone 6β-hydroxylation/CYP3A4, respectively, using HPLC.
Results: Iloperidone inhibited the activity of CYP3A4 via a noncompetitive mechanism (K = 0.
Background: Inhibition of cytochrome P450 (CYP) enzymes is the most common cause of harmful drug-drug interactions. The present study aimed at examining the inhibitory effect of the novel antipsychotic drug asenapine on the main CYP enzymes in human liver.
Methods: The experiments were performed in vitro using pooled human liver microsomes and the human cDNA-expressed CYP enzymes: CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 (Supersomes).