Publications by authors named "Prueger J"

Agricultural systems evolve from the interactions of climate, crops, soils, management practices (e.g., tillage, cover crops, nutrient management), and economic risks and rewards.

View Article and Find Full Text PDF

Large sample datasets of evapotranspiration (ET) measurements with well documented data provenance and quality assurance are critical for water management and many fields of earth science research. We present a post-processed ET oriented dataset at daily and monthly timesteps, from 161 stations, including 148 eddy covariance flux towers, that were chosen based on their data quality from nearly 350 stations across the contiguous United States. In addition to ET, the data includes energy and heat fluxes, meteorological measurements, and reference ET downloaded from gridMET for each flux station.

View Article and Find Full Text PDF

Unlabelled: Improved accuracy of evapotranspiration (ET) estimation, including its partitioning between transpiration (T) and surface evaporation (E), is key to monitor agricultural water use in vineyards, especially to enhance water use efficiency in semi-arid regions such as California, USA. Remote-sensing methods have shown great utility in retrieving ET from surface energy balance models based on thermal infrared data. Notably, the two-source energy balance (TSEB) has been widely and robustly applied in numerous landscapes, including vineyards.

View Article and Find Full Text PDF

Unlabelled: Irrigation and other agricultural management practices play a key role in land surface fluxes and their interactions with atmospheric processes. California's Central Valley agricultural productivity is strongly linked to water availability associated with conveyance infrastructure and groundwater, but greater scrutiny over agricultural water use requires better practices particularly during extended and severe drought conditions. The future of irrigated agriculture in California is expected to be characterized neither by perpetual scarcity nor by widespread abundance.

View Article and Find Full Text PDF

Unlabelled: Characterization of model errors is important when applying satellite-driven evapotranspiration (ET) models to water resource management problems. This study examines how uncertainty in meteorological forcing data and land surface modeling propagate through to errors in final ET data calculated using the Satellite Irrigation Management Support (SIMS) model, a computationally efficient ET model driven with satellite surface reflectance values. The model is applied to three instrumented winegrape vineyards over the 2017-2020 time period and the spatial and temporal variation in errors are analyzed.

View Article and Find Full Text PDF

Robust information on consumptive water use (evapotranspiration, ET) derived from remote sensing can significantly benefit water decision-making in agriculture, informing irrigation schedules and water management plans over extended regions. To be of optimal utility for operational usage, these remote sensing ET data should be generated at the sub-field spatial resolution and daily-to-weekly timesteps commensurate with the scales of water management activities. However, current methods for field-scale ET retrieval based on thermal infrared (TIR) imaging, a valuable diagnostic of canopy stress and surface moisture status, are limited by the temporal revisit of available medium-resolution (100 m or finer) thermal satellite sensors.

View Article and Find Full Text PDF

Daily evapotranspiration ( ) plays a key role in irrigation water management and is particularly important in drought-stricken areas, such as California and high-value crops. Remote sensing allows for the cost-effective estimation of spatial evapotranspiration (), and the advent of small unmanned aerial systems () technology has made it possible to estimate instantaneous high-resolution at the plant, row, and subfield scales. estimates using "instantaneous" remote sensing measurements with half-hourly/hourly forcing micrometeorological data, yielding hourly fluxes in W/m that are then translated to a daily scale (mm/day) under two assumptions: (a) relative rates, such as the ratios of -to-net radiation ( ) or -to-solar radiation ( ), are assumed to be constant rather than absolute, and (b) nighttime evaporation () and transpiration () contributions are negligible.

View Article and Find Full Text PDF

(small-Unmanned Aircraft System) and advanced surface energy balance models allow detailed assessment and monitoring (at plant scale) of different (agricultural, urban, and natural) environments. Significant progress has been made in the understanding and modeling of atmosphere-plant-soil interactions and numerical quantification of the internal processes at plant scale. Similarly, progress has been made in ground truth information comparison and validation models.

View Article and Find Full Text PDF

Accurate quantification of the partitioning of evapotranspiration (ET) into transpiration and evaporation fluxes is necessary to understanding ecosystem interactions among carbon, water, and energy flux components. ET partitioning can also support the description of atmosphere and land interactions and provide unique insights into vegetation water status. Previous studies have identified leaf area index (LAI) estimation as a key descriptor of biomass conditions needed for the estimation of transpiration and evaporation.

View Article and Find Full Text PDF

Surface temperature is necessary for the estimation of energy fluxes and evapotranspiration from satellites and airborne data sources. For example, the Two-Source Energy Balance (TSEB) model uses thermal information to quantify canopy and soil temperatures as well as their respective energy balance components. While surface (also called kinematic) temperature is desirable for energy balance analysis, obtaining this temperature is not straightforward due to a lack of spatially estimated narrowband (sensor-specific) and broadband emissivities of vegetation and soil, further complicated by spectral characteristics of the UAV thermal camera.

View Article and Find Full Text PDF

Validation of surface energy fluxes from remote sensing sources is performed using instantaneous field measurements obtained from eddy covariance (EC) instrumentation. An eddy covariance measurement is characterized by a footprint function / weighted area function that describes the mathematical relationship between the spatial distribution of surface flux sources and their corresponding magnitude. The orientation and size of each flux footprint / source area depends on the micro-meteorological conditions at the site as measured by the EC towers, including turbulence fluxes, friction velocity (u), and wind speed, all of which influence the dimensions and orientation of the footprint.

View Article and Find Full Text PDF

Estimation of surface energy fluxes using thermal remote sensing-based energy balance models (e.g., TSEB2T) involves the use of local micrometeorological input data of air temperature, wind speed, and incoming solar radiation, as well as vegetation cover and accurate land surface temperature (LST).

View Article and Find Full Text PDF

Evapotranspiration () is a key variable for hydrology and irrigation water management, with significant importance in drought-stricken regions of the western US. This is particularly true for California, which grows much of the high-value perennial crops in the US. The advent of small Unmanned Aerial System () with sensor technology similar to satellite platforms allows for the estimation of high-resolution at plant spacing scale for individual fields.

View Article and Find Full Text PDF

In recent years, the deployment of satellites and unmanned aerial vehicles (UAVs) has led to production of enormous amounts of data and to novel data processing and analysis techniques for monitoring crop conditions. One overlooked data source amid these efforts, however, is incorporation of 3D information derived from multi-spectral imagery and photogrammetry algorithms into crop monitoring algorithms. Few studies and algorithms have taken advantage of 3D UAV information in monitoring and assessment of plant conditions.

View Article and Find Full Text PDF

Vineyards in many semi-arid regions globally face limited water resources. Monitoring évapotranspiration (ET) of vineyards is critical for water resource management, but remains difficult due to the complex biophysics of the surfaces. Both measurement and modeling approaches for estimating turbulent water vapor transport rely on implicit assumptions that exchanges occur in a reasonably regular fashion over the time scales generally used for averaging.

View Article and Find Full Text PDF

The thermal-based Two-Source Energy Balance (TSEB) model partitions the evapotranspiration (ET) and energy fluxes from vegetation and soil components providing the capability for estimating soil evaporation (E) and canopy transpiration (T). However, it is crucial for ET partitioning to retrieve reliable estimates of canopy and soil temperatures and net radiation, as the latter determines the available energy for water and heat exchange from soil and canopy sources. These two factors become especially relevant in row crops with wide spacing and strongly clumped vegetation such as vineyards and orchards.

View Article and Find Full Text PDF

Launched in January 2015, the National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) observatory was designed to provide frequent global mapping of high-resolution soil moisture and freeze-thaw state every two to three days using a radar and a radiometer operating at L-band frequencies. Despite a hardware mishap that rendered the radar inoperable shortly after launch, the radiometer continues to operate nominally, returning more than two years of science data that have helped to improve existing hydrological applications and foster new ones. Beginning in late 2016 the SMAP project launched a suite of new data products with the objective of recovering some high-resolution observation capability loss resulting from the radar malfunction.

View Article and Find Full Text PDF

Data on air emissions from open-lot beef cattle () feedlots are limited. This research was conducted to determine fluxes of particulate matter with an aerodynamic diameter ≤10 μm (PM) from a commercial beef cattle feedlot in Kansas using the flux-gradient technique, a widely used micrometeorological method for air emissions from open sources. Vertical PM concentration profiles and micrometeorological parameters were measured at the feedlot using tapered element oscillating microbalance PM samplers and eddy covariance instrumentations (i.

View Article and Find Full Text PDF

Soil preparation for agricultural crops produces aerosols that may significantly contribute to seasonal atmospheric particulate matter (PM). Efforts to reduce PM emissions from tillage through a variety of conservation management practices (CMPs) have been made, but the reductions from many of these practices have not been measured in the field. A study was conducted in California's San Joaquin Valley to quantify emissions reductions from fall tillage CMP.

View Article and Find Full Text PDF

Unlabelled: Reverse dispersion modeling has been used to determine air emission fluxes from ground-level area sources, including open-lot beef cattle feedlots. This research compared Gaussian-based AERMOD, the preferred regulatory dispersion model of the US. Environmental Protection Agency (EPA), and WindTrax, a backward Lagrangian stochastic-based dispersion model, in determining PM10 emission rates for a large beef cattle feedlot in Kansas.

View Article and Find Full Text PDF

An 8-yr study was conducted to better understand factors influencing year-to-year variability in field-scale herbicide volatilization and surface runoff losses. The 21-ha research site is located at the USDA-ARS Beltsville Agricultural Research Center in Beltsville, MD. Site location, herbicide formulations, and agricultural management practices remained unchanged throughout the duration of the study.

View Article and Find Full Text PDF

A 3-yr study was conducted to focus on the impact of surface soil water content on metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide) volatilization from a field with different surface soil water regimes created by subsurface water flow paths. Metolachlor vapor fluxes were measured at two locations within the field where local meteorological and soil conditions were relatively constant, except for surface soil water content, which differed significantly. Surface soil water content at the two sites differed in response to the presence of subsurface flow pathways.

View Article and Find Full Text PDF

Pesticide volatilization is a significant loss pathway that may have unintended consequences in nontarget environments. Field-scale pesticide volatilization involves the interaction of a number of complex variables. There is a need to acquire pesticide volatilization fluxes from a location where several of these variables can be held constant.

View Article and Find Full Text PDF

Nitrogen (N) loss from agricultural systems raises concerns about the potential impact of farming practices on environmental quality. N is a critical input to agricultural production. However, there is little understanding of the interactions among crop water use, N application rates, and soil types.

View Article and Find Full Text PDF