Senescent cells play a causative role in many diseases, and their elimination is a promising therapeutic strategy. Here, through a genome-wide CRISPR/Cas9 screen, we identify the gene PPIF, encoding the mitochondrial protein cyclophilin D (CypD), as a novel senolytic target. Cyclophilin D promotes the transient opening of the mitochondrial permeability transition pore (mPTP), which serves as a failsafe mechanism for calcium efflux.
View Article and Find Full Text PDFWe investigated the interfaces of the epiphyseal plate with over- and underlying bone segments using an integrated approach of histochemistry, microtomography and scanning electron microscopy (SEM) to overcome the inherent limitations of sections-based techniques. Microtomography was able to provide an unobstructed, frontal view of large expanses of the two bone surfaces facing the growth plate, while SEM observation after removal of the soft matrix granted an equally unhindered access with a higher resolution. The two interfaces appeared widely dissimilar.
View Article and Find Full Text PDFAgeing is accompanied by a progressive impairment of cellular function and a systemic deterioration of tissues and organs, resulting in increased vulnerability to multiple diseases. Here, we review the interplay between two hallmarks of ageing, namely, mitochondrial dysfunction and cellular senescence. The targeting of specific mitochondrial features in senescent cells has the potential of delaying or even reverting the ageing process.
View Article and Find Full Text PDFMitochondrial dysfunction has been reported in obesity and insulin resistance, but primary genetic mitochondrial dysfunction is generally not associated with these, arguing against a straightforward causal relationship. A rare exception, recently identified in humans, is a syndrome of lower body adipose loss, leptin-deficient severe upper body adipose overgrowth, and insulin resistance caused by the p.Arg707Trp mutation in , encoding mitofusin 2.
View Article and Find Full Text PDFIn the synovial joints the transition between the soft articular cartilage and the subchondral bone is mediated by a layer of calcified cartilage of structural and mechanical characteristics closer to those of bone. This layer, buried in the depth of articular cartilage, is not directly accessible and is mostly visualized in histological sections of decalcified tissue, where it appears as a darker strip in contact with the subchondral bone. In this study conventional histology and scanning electron microscopy (SEM) with secondary electron imaging (SE) or backscattered electron imaging (BSE) were used to discriminate the calcified and the uncalcified cartilage in high resolution on native, untreated tissue as well as in deproteinated or demineralized tissue.
View Article and Find Full Text PDFMitochondria are dynamic organelles that undergo membrane remodeling events in response to metabolic alterations to generate an adequate mitochondrial network. Here, we investigated the function of mitochondrial fission regulator 1-like protein (MTFR1L), an uncharacterized protein that has been identified in phosphoproteomic screens as a potential AMP-activated protein kinase (AMPK) substrate. We showed that MTFR1L is an outer mitochondrial membrane-localized protein modulating mitochondrial morphology.
View Article and Find Full Text PDFThe hereditary spastic paraplegias (HSP) are among the most genetically diverse of all Mendelian disorders. They comprise a large group of neurodegenerative diseases that may be divided into 'pure HSP' in forms of the disease primarily entailing progressive lower-limb weakness and spasticity, and 'complex HSP' when these features are accompanied by other neurological (or non-neurological) clinical signs. Here, we identified biallelic variants in the transmembrane protein 63C (TMEM63C) gene, encoding a predicted osmosensitive calcium-permeable cation channel, in individuals with hereditary spastic paraplegias associated with mild intellectual disability in some, but not all cases.
View Article and Find Full Text PDFDermal papilla cells (DPCs) are a source of nutrients and growth factors, which support the proliferation and growth of keratinocytes as well as promoting the induction of new hair follicles and maintenance of hair growth. The protection from reactive oxygen species (ROS) and the promotion of angiogenesis are considered two of the basal mechanisms to preserve the growth of the hair follicle. In this study, a noncrosslinked hyaluronic acid (HA) filler (HYDRO DELUXE BIO, Matex Lab S.
View Article and Find Full Text PDFThe fact that >99% of mitochondrial proteins are encoded by the nuclear genome and synthesised in the cytosol renders the process of mitochondrial protein import fundamental for normal organelle physiology. In addition to this, the nuclear genome comprises most of the proteins required for respiratory complex assembly and function. This means that without fully functional protein import, mitochondrial respiration will be defective, and the major cellular ATP source depleted.
View Article and Find Full Text PDF(1) Background: Injectable hyaluronic acid (HA) dermal fillers are used to restore volume, hydration and skin tone in aesthetic medicine. HA fillers differ from each other due to their cross-linking technologies, with the aim to increase mechanical and biological activities. One of the most recent and promising cross-linkers is polyethylene glycol diglycidyl ether (PEGDE), used by the company Matex Lab S.
View Article and Find Full Text PDFLaser scalpels used in medical surgery concentrate light energy, heating the tissues. Recently, we reported thermoluminescence emission from laser-treated soft tissues. Here we investigated the thermo-optical effects caused by a laser operating at 808 nm on animal bones (beef ribs) through luminescence and fluorescence imaging, thermal imaging and scanning electron microscopy.
View Article and Find Full Text PDFThe multicomponent preparations for mesotherapy are based on the principle that skin and hair aging can be prevented by supplying the fundamental substrates for correct cellular functioning, such as nucleotides, vitamins, amino acids, and biomolecules including hyaluronic acid (HA) that promote skin hydration and several biological activities. The study provides evidence for the application of HYDRO DELUXE BIO (Matex Lab S.p.
View Article and Find Full Text PDFInt J Mol Sci
January 2021
Mitochondria are ubiquitous intracellular organelles found in almost all eukaryotes and involved in various aspects of cellular life, with a primary role in energy production. The interest in this organelle has grown stronger with the discovery of their link to various pathologies, including cancer, aging and neurodegenerative diseases. Indeed, dysfunctional mitochondria cannot provide the required energy to tissues with a high-energy demand, such as heart, brain and muscles, leading to a large spectrum of clinical phenotypes.
View Article and Find Full Text PDFThe free surface of the articular cartilage must withstand compressive and shearing forces, maintain a low friction coefficient and allow oxygen and metabolites to reach the underlying matrix. In many ways it is critical to the physiology of the whole tissue and its disruption always involves deep pathological alterations and loss of the joint integrity. Being very difficult to image with section-based conventional techniques, it was often described by previous research in conflicting terms or entirely overlooked.
View Article and Find Full Text PDFThe articular cartilage has been the subject of a huge amount of research carried out with a wide array of different techniques. Most of the existing morphological and ultrastructural data on the this tissue, however, were obtained either by light microscopy or by transmission electron microscopy. Both techniques rely on thin sections and neither allows a direct, face-on visualization of the free cartilage surface (synovial surface), which is the only portion subject to frictional as well as compressive forces.
View Article and Find Full Text PDFThe aim was to analyze the morphology of normal human macula densa (MD), evaluate the cells that may be responsible for its turnover, and collect quantitative data. Of four samples of normal human renal tissue, two were embedded in resin to measure the longitudinal extension and examine the ultrastructure of the MD, the other two were embedded in paraffin to study apoptosis and cell proliferation. The MD is composed of a monolayer tissue about 40 μm long, which includes 35-40 cells arranged in overlapping rows.
View Article and Find Full Text PDFIn this study, the application of a recently introduced device based on electromagnetic energy transfer by microwaves for fat reduction, permitted to study specifically the modifications of thick fibrous collagen interlobular septa in the subcutaneous adipose tissue, related to the formation of large clusters of adipocytes. The use of Picrosirius red staining associated with circularly polarized microscopy gave evidence of appreciable modifications of the fibrous connective tissue forming septa. Compact fibrotic bundles of collagen I forming interlobular septa appeared reduced or dissolved, in part substituted by the increase of more diffuse and finely reticular collagen III.
View Article and Find Full Text PDFDoxycycline has anti-tumour effects in a range of tumour systems. The aims of this study were to define the role mitochondria play in this process and examine the potential of doxycycline in combination with gemcitabine. We studied the adenocarcinoma cell line A549, its mitochondrial DNA-less derivative A549 ρ° and cultured fibroblasts.
View Article and Find Full Text PDF