In an era when ecological and environmental needs and responsibilities apply pressure on the world's countries and sustainability takes centre stage, ecologic/environmental (E/E) laboratories stand as beacons of scientific inquiry, innovating, optimising, and applying various tests for a better knowledge of our natural resources and the quality status of ecosystems. The purpose of this review is to provide an overview of the use of flow cytometry (FC) as a tool for assessing environmental quality, mainly using living organisms and their biological changes as bioindicators. Cytometric approaches applied to both marine and terrestrial ecosystems ensure the detection of biochemical and functional status of the cells composing either an organ thereof or the organism itself.
View Article and Find Full Text PDFUltraviolet filters (UVFs) added to sunscreens (SS) are emerging contaminants in marine environments due to their adverse effects on organisms and ecosystems. UVFs have also been detected in beach-dune systems, but their influence on resident organisms has not been explored yet. Native plants are fundamental components of coastal dunes, and these ecologically/economically important systems are currently among the most threatened globally.
View Article and Find Full Text PDFA geochemical study was conducted in a coastal plain in the Orbetello Lagoon area in southern Tuscany (Italy), acquiring new data on groundwater, lagoon water, and stream sediment for insights into the origin, distribution, and behaviour of mercury in a Hg-enriched carbonate aquifer. The main hydrochemical features of the groundwater are ruled by the mixing of Ca-SO and Ca-Cl continental fresh waters of the carbonate aquifer and Na-Cl saline waters of the Tyrrhenian Sea and Lagoon of Orbetello. Groundwater had highly variable Hg concentrations (< 0.
View Article and Find Full Text PDFNanosilver applications, including sensing and water treatment, have significantly increased in recent years, although safety for humans and the environment is still under debate. Here, we tested the environmental safety of a novel formulation of silver nanoparticles functionalized with citrate and L-cysteine (AgNPcitLcys) on freshwater cnidarian as an emerging ecotoxicological model for the safety of engineered nanomaterials. AgNPcitLcys behavior was characterized by dynamic light scattering (DLS), while Ag release was measured by inductively coupled plasma mass spectrometry (ICP-MS).
View Article and Find Full Text PDFNanosilver, widely employed in consumer products as biocide, has been recently proposed as sensor, adsorbent and photocatalyst for water pollution monitoring and remediation. Since nanosilver ecotoxicity still pose limitations to its environmental application, a more ecological exposure testing strategy should be coupled to the development of safer formulations. Here, we tested the environmental safety of novel bifunctionalized nanosilver capped with citrate and L-cysteine (AgNPcitLcys) as sensor/sorbent of Hg in terms of behaviour and ecotoxicity on microalgae (1-1000 µg/L) and microcrustaceans (0.
View Article and Find Full Text PDFThis study focused on the effects of surface coating, acquired through the interaction with natural biomolecules, on the behavior and ecotoxicity of nanoparticles (NPs). To this aim, the effects of Cerium Oxide Nanoparticles (CeONPs) naked and coated with chitosan and alginate on the marine mussel Mytilus galloprovincialis were compared. Mussels were exposed for 7 days to 100 μg L of CeONPs and for 28 days to 1 μg L of CeONPs.
View Article and Find Full Text PDFThe aim of this study was to investigate the ability of biochar amendment to reduce the availability of Pb in the soil and its uptake in lettuce ( L. var. ).
View Article and Find Full Text PDFZinc environmental levels are increasing due to human activities, posing a threat to ecosystems and human health. Therefore, new tools able to remediate Zn contamination in freshwater are highly recommended. Specimens of (zebra mussel) were exposed for 48 h and 7 days to a wide range of ZnCl nominal concentrations (1-10-50-100 mg/L), including those environmentally relevant.
View Article and Find Full Text PDFThe adsorption of biomacromolecules is a fundamental process that can alter the behaviour and adverse effects of nanoparticles (NPs) in natural systems. While the interaction of NPs with natural molecules present in the environment has been described, their biological impacts are largely unknown. Therefore, this study aims to provide a first evidence of the influence of biomolecules sorption on the toxicity of cerium oxide nanoparticles (CeONPs) towards the freshwater bivalve Dreissena polymorpha.
View Article and Find Full Text PDFTo encourage the applicability of nano-adsorbent materials for heavy metal ion removal from seawater and limit any potential side effects for marine organisms, an ecotoxicological evaluation based on a biological effect-based approach is presented. ZnCl (10 mg L) contaminated artificial seawater (ASW) was treated with newly developed eco-friendly cellulose-based nanosponges (CNS) (1.25 g L for 2 h), and the cellular and tissue responses of marine mussel were measured before and after CNS treatment.
View Article and Find Full Text PDFIn this work, hydrophilic silver nanoparticles (AgNPs), bifunctionalized with citrate (Cit) and L-cysteine (L-cys), were synthesized. The typical local surface plasmon resonance (LSPR) at λ = 400 nm together with Dynamic Light Scattering (DLS) measurements (<2R> = 8 ± 1 nm) and TEM studies (Ø = 5 ± 2 nm) confirmed the system nanodimension and the stability in water. Molecular and electronic structures of AgNPs were investigated by FTIR, SR-XPS, and NEXAFS techniques.
View Article and Find Full Text PDFThe worldwide growing interest in traditional medicines, including herbal medicines and herbal dietary supplements, has recently been accompanied by concerns on quality and safety of this type of health care. The content of nutritional and potentially toxic elements in medicinal plants is of paramount interest as it may vary remarkably according to different environmental and ecophysiological factors. In this study, the concentrations of essential and non-essential trace elements-Co, Cr, Cu, Ni, Sr, and Zn-were determined in the roots and aerial parts of the worldwide distributed and economically important medicinal herb Hypericum perforatum L.
View Article and Find Full Text PDFA geochemical study was carried out at the former Abbadia San Salvatore (ASS) mining site of the Monte Amiata ore district (Italy). Hg, As and Sb total contents and fractionation using a sequential extraction procedure were determined in soil and mining waste samples. Ore processing activities provided a different contribution to Hg contamination and concentration in soil fractions, influencing its behaviour as volatility and availability.
View Article and Find Full Text PDFA biogeochemistry field study was conducted in the Siena urban area (Italy) with the main objective of establishing the relationship between available amounts of heavy metals in soil assessed by a chemical method (soil fractionation) and bioavailability assessed by a biological method (bioaccumulation in earthworm tissues). The total content of traffic-related (Cd, Cu, Pb, Sb, Zn) and geogenic (Co, Cr, Ni, U) heavy metals in uncontaminated and contaminated soils and their concentrations in soil fractions and earthworms were used for this purpose. The bioavailability of heavy metals assessed by earthworms did not always match the availability defined by soil fractionation.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2016
A biogeochemical field study was carried out in the industrial area of Kosovska Mitrovica in northern Kosovo, where agricultural soils were contaminated by potentially toxic elements due to smelting activity. Total and bioavailable contents of As, Cd, Co, Cu, Pb, Sb, U and Zn in soil and their concentrations in maize roots and grains were determined. Soil contamination by As, Cd, Cu, Pb, Sb and Zn was variable from slightly to highly contaminated soils and influenced both the bioavailable fraction and accumulation of these potentially toxic elements in maize tissues.
View Article and Find Full Text PDFThis paper analyses four strategies for managing the Mixed Municipal Solid Waste (MMSW) in terms of their environmental impacts and potential advantages by means of Life Cycle Assessment (LCA) methodology. To this aim, both a multi-input and a multi-output approach are applied to evaluate the effect of these perspectives on selected impact categories. The analyzed management options include direct landfilling with energy recovery (S-1), Mechanical-Biological Treatment (MBT) followed by Waste-to-Energy (WtE) conversion (S-2), a combination of an innovative MBT/MARSS (Material Advanced Recovery Sustainable Systems) process and landfill disposal (S-3), and finally a combination of the MBT/MARSS process with WtE conversion (S-4).
View Article and Find Full Text PDFThis paper presents the results of a biomonitoring study to evaluate the environmental impact of airborne emissions from a municipal solid waste landfill in central Italy. Concentrations of 11 heavy elements, as well as photosynthetic efficiency and cell membrane integrity were measured in Evernia prunastri lichens transplanted for 4months in 17 monitoring sites around the waste landfill. Heavy element contents were also determined in surface soils.
View Article and Find Full Text PDFThe major environmental impact of landfills is emission of pollutants via the leachate and gas pathways. The hepatopancreas of the terrestrial isopod Armadillidium vulgare (Isopoda, Crustacea, Latreille 1804) plays an important role in the bioaccumulation of contaminants, such as heavy metals. To evaluate the effects of landfill leachate treatment, 2 different approaches were applied: 1) the detection of accumulation of trace elements (As, Cd, Cr, Cu, Sb, Zn, Pb, Ni, V) in hepatopancreatic cells, and 2) the evaluation of biological effect of contaminants on fresh hepatopancreatic cells by flow-cytometric analyses.
View Article and Find Full Text PDFTo assess the quality of the environment in southern Iraq after the Gulf War II, a geochemical survey was carried out. The survey provided data on the chemistry of Euphrates waters, as well as the trace element contents, U and Pb isotopic composition, and PAH levels in soil and tree bark samples. The trace element concentrations and the (235)U/(238)U ratio values in the Euphrates waters were within the usual natural range, except for the high contents of Sr due to a widespread presence of gypsum in soils of this area.
View Article and Find Full Text PDFFive arsenic-resistant bacterial strains (designated MP1400, MP1400a, MP1400d, APSLA3, and BPSLA3) were isolated from soils collected at the Alps region (Italy), which showed no contamination by arsenic. Phylogenetic analysis of the 16S rRNA gene sequences assigned them to the genera Pseudomonas and Bacillus. Bacillus sp.
View Article and Find Full Text PDFThe uranium content and (235)U/(238)U atom ratio were determined in soils and earthworms of an area of Kosovo (Djakovica garrison), heavily shelled with depleted uranium (DU) ammunition during the 1999 war. The aim of the study was to reconstruct the small-scale distribution of uranium and assess the influence of the DU added to the surface environment. The total uranium concentration and the (235)U/(238)U ratio of topsoils showed great variability and were inversely correlated.
View Article and Find Full Text PDFThis paper reports the results of a study using lichens as biomonitors to investigate the environmental distribution of uranium and other trace elements at selected Kosovo sites. The results suggested that the use of depleted uranium (DU) ammunitions in Kosovo did not cause a diffuse environmental contamination in such a way to have caused a detectable U enrichment in lichens. Also isotopic (235)U/(238)U measurements did not indicate the presence of DU particles in lichens.
View Article and Find Full Text PDFPreliminary data of a biogeochemical survey concerning antimony transfer from soil to plants in an abandoned Sb-mining area are presented. Achillea ageratum, Plantago lanceolata and Silene vulgaris can strongly accumulate antimony when its extractable fraction in the soil is high (139-793 mg/kg). A.
View Article and Find Full Text PDFFour different sampling surveys were carried out in 1998 to evaluate the possible causes of severe mercury contamination involving many wells spread over a vast territory along the coast of southern Tuscany (Italy). Several samples of groundwater and coastal sea water were collected to determine the Hg, Cl, Ar, He and N contents. Anthropogenic or deep-seated sources of the Hg involved in the contamination event can be excluded.
View Article and Find Full Text PDFEnviron Pollut
October 2002
Stream waters draining an old mining area present very high rare earth element (REE) contents, reaching 928 microg/l as the maximum total value (sigmaREE). The middle rare earth elements (MREEs) are usually enriched with respect to both the light (LREEs) and heavy (HREEs) elements of this group, producing a characteristic "roof-shaped" pattern of the shale Post-Archean Australian Shales-normalized concentrations. At the Fenice Capanne Mine (FCM), the most important base metal mine of the study area, the REE source coincides with the mine tailings, mostly the oldest ones composed of iron-rich materials.
View Article and Find Full Text PDF