Publications by authors named "Prosper E Ovuoraye"

The consumption of unrefined vegetable oil poses acute and chronic health issues, yet improper disposal of waste plantain peels is not environmentally sustainable. This research investigates the feasibility, mechanism and thermodynamics of waste plantain peels, and commercial bentonite clay for soybean oil refining. Experiment was carried out using masses (1-4 g) of commercial bentonite clay, and unripe plantain peel ash (UPPA) to degummed and neutralized free fatty acid (FFA) contents in crude soybean oil at varying temperatures (50-120 °C), and time (15-35 min) for treatment of soybean oil.

View Article and Find Full Text PDF

Emerging contaminants such as nanoplastics (NPs) and per- and polyfluoroalkyl substances (PFAS), have been detected in the environment and breast milk, thus exposing infants to potentially harmful chemicals during breastfeeding. Breast milk contains secretory immunoglobulin A (SIgA), an antibody that plays a vital role in disease protection and the development of the infant's immune system. This study employed molecular simulation and fractional factorial designs to assess the toxicity of NPs and PFAS on breast milk and their influence on infant immunity by inhibiting SIgA.

View Article and Find Full Text PDF

Following the discovery of plastics in the human placenta, this study evaluated the toxicity of ten different nanoplastics (NPs) in the human placenta. Since the placenta performs metabolic and excretion functions by the enzymatic system, the NPs were docked on these human enzymes including soluble epoxide hydrolase, uracil phosphoribosyltransferase, beta 1,3-glucuronyltransferase I, sulfotransferase, N-acetyltransferase 2, and cytochrome P450 1A1at their active sites with toxicity (binding affinity) determined and compared to control compounds. Density functional theory analysis were conducted on the NPs to identify their global reactivity descriptors and Artificial Neural Networks to predict toxicity based on reactivity descriptors.

View Article and Find Full Text PDF

Aquaculture effluent treatment is essential to eliminate the undesirable characteristics of water to ensure cleaner production and environmental sustainability. In an effort to develop green coagulant without compromising cost, this research investigated the feasibility of aquaculture effluent (AQEF) pollutant removal using Picralima nitida seeds extract (PNSC) and its bio-coagulation/adsorption kinetic characteristics with the substrate in water. The coagulative decrease was observed in terms of TD (turbidity), TSS (total suspended solids), COD (chemical oxygen demand), BOD (biochemical oxygen demand), and COLR (color) from AQEF.

View Article and Find Full Text PDF

Molecular docking, molecular dynamics modelling, and fractional factorial design methodologies were used in the current work to examine the harmful effects of ten microplastic (MPs) such as polystyrene (PS), polyvinylchloride (PVC), polyurethane (PU), polymethyl methacrylate (PMMA), polyamide (PA), polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polychloropene (PCP) and polycarbonate (PC) on the aquatic organism (zebrafish). The toxicity was evaluated based on the docking of the MPs on cytochrome P450 (CYP P450) protein crystals. The binding affinities (ΔG) followed the order, PC (-6.

View Article and Find Full Text PDF