Publications by authors named "Prosenjit Mondal"

Impaired insulin receptor signaling is strongly linked to obesity-related metabolic conditions like non-alcoholic fatty liver disease (NAFLD) and Type 2 diabetes (T2DM). However, the exact mechanisms behind impaired insulin receptor (INSR) signaling in obesity induced by a high-fat diet remain elusive. In this study, we identify an E3 ubiquitin ligase, tripartite motif-containing protein 32 (TRIM32), as a key regulator of hepatic insulin signaling that targets the insulin receptor (INSR) for ubiquitination and proteasomal degradation in high-fat diet (HFD) mice.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces BI-CyG, a small molecule optical marker designed through structural modifications of a cyanine scaffold, offering improved excitation and emission wavelengths compared to existing probes.
  • The probe emits in the near-infrared (NIR) region and shows selective binding to serum albumin, demonstrating its potential for imaging and diagnostic applications in conditions like hyperglycemia.
  • Molecular modeling and experimental studies confirm the probe's performance and its ability to track changes in albumin levels in hepatic cells, alongside insights into the therapeutic role of metformin in managing hyperglycemia-induced albumin alterations.
View Article and Find Full Text PDF

Intracellular RNA imaging with organic small molecular probes has been an intense topic, although the number of such reported dyes, particularly dyes with high quantum yields and long wavelength excitation/emission, is quite limited. The present work reports the design and synthesis of three cationic julolidine-azolium conjugates (OX-JLD, BTZ-JLD and SEZ-JLD) as turn-on fluorescent probes with appreciably high quantum yields and brightness upon interaction with RNA. A structure-efficiency relationship has been established for their potential for the interaction and imaging of intracellular RNA.

View Article and Find Full Text PDF

Considering that carbon monoxide is both a vital gasotransmitter and an obnoxious gas, tremendous efforts have been dedicated toward its recognition through various methods. However, the fluorescent light-up approach through the exploration of optical markers remains one of the most convenient methods owing to its several advantages. Amongst the different approaches towards the development of CO responsive optically active molecular markers, the Tsuji-Trost reaction-based CO recognition strategy has remained one of the most significant areas of interest across researchers working in this field.

View Article and Find Full Text PDF
Article Synopsis
  • Nonalcoholic fatty liver disease (NAFLD) is a widespread condition linked to chronic overnutrition, inflammation, and insulin resistance, but the specific relationships among these factors are not fully understood.
  • High-fat diets (HFD) increase the expression of a protein called STK38 in the liver, which drives systemic inflammation and insulin resistance, contributing to fatty liver disease.
  • Reducing STK38 levels in HFD-fed mice leads to lower inflammation, better insulin sensitivity, and less fat accumulation in the liver, highlighting STK38 as a potential target for improving liver and immune health.
View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is an independent predictor of systemic insulin resistance and type 2 diabetes mellitus (T2DM). However, converse correlates between excess liver fat content and β-cell function remain equivocal. Specifically, how the accumulation of liver fat consequent to the enhanced de novo lipogenesis (DNL) leads to pancreatic β-cell failure and eventually to T2DM is elusive.

View Article and Find Full Text PDF

With the promising advantages of the near-infrared region (NIR) emissive markers for serum albumin becoming very prominent recently, we devised CyG-NHS as the cyanine derived longest NIR-I emissive optical marker possessing albumin selective recognition ability in diverse biological milieu. Multiscale modeling involving molecular docking, molecular dynamics, and implicit solvent binding free energy calculations have been employed to gain insights into the unique binding ability of the developed probe at domain-I of albumin, in contrast to the good number of domain IIA or IIIA binding probes available in the literature reports. The binding free energy was found to be -31.

View Article and Find Full Text PDF

An absolute or relative deficiency of pancreatic β-cells mass and functionality is a crucial pathological feature common to type 1 diabetes mellitus and type 2 diabetes mellitus. Glucagon-like-peptide-1 receptor (GLP1R) agonists have been the focus of considerable research attention for their ability to protect β-cell mass and augment insulin secretion with no risk of hypoglycemia. Presently commercially available GLP1R agonists are peptides that limit their use due to cost, stability, and mode of administration.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by reduced insulin sensitivity and dysfunction of β-cells. Although the increasing prevalence of diabetes worldwide is largely attributed to genetic predisposition or lifestyle factors (insufficient physical activity), and caloric intake. Environmental factors, exposure to xenobiotics and heavy metals have also been reported to be causative factors of T2DM.

View Article and Find Full Text PDF

We present fluorogenic cationic organo chalcogens that are highly selective to RNA. We have demonstrated that the conformational dynamics and subsequently the optical properties of these dyes can be controlled to facilitate efficient bioimaging. We report the application of organoselenium and organosulfur-based cell-permeable red-emissive probes bearing a favorable cyclic sidearm for selective and high contrast imaging of cell nucleoli.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) commonly affects bone quality at different hierarchical levels and leads to an increase in the risk of bone fracture. Earlier, some anti-diabetic drugs showed positive effects on bone mechanical properties. Recently, we have investigated that low-dose naltrexone (LDN), a TLR4 antagonist treatment, improves glucose tolerance in high-fat diet (HFD)-induced T2DM mice and also gives protection against HFD-induced weight gain.

View Article and Find Full Text PDF

Overconsumption of sucrose and other sugars has been associated with nonalcoholic fatty liver disease (NAFLD). Reports suggest hepatic de novo lipogenesis (DNL) as an important contributor to and regulator of carbohydrate-induced hepatic lipid accumulation in NAFLD. The mechanisms responsible for the increase in hepatic DNL due to overconsumption of carbohydrate diet are less than clear; however, literatures suggest high carbohydrate diet to activate the lipogenic transcription factor carbohydrate response element-binding protein (ChREBP), which further transcribes genes involved in DNL.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) commonly affects the bone mineral phase and advanced glycation end-products (AGEs) which eventually led to changes in bone material properties on the nano and macro-scale. Several anti-diabetic compounds are widely used to control high blood sugar or glucose caused by T2DM. Low Dose Naltrexone (LDN), an opiate receptor antagonist, and a known TLR4 antagonist, treatment can improve glucose tolerance and insulin sensitivity in high-fat-diet (HFD) induced T2DM mice.

View Article and Find Full Text PDF

ChREBP is the master regulator of carbohydrate dependent glycolytic and lipogenic flux within metabolic tissues. It plays a vital role in hyper-calorific milieu by activating glycolysis, lipogenesis along with pentose phosphate shunt and glycogen synthesis, fostering immediate reduction in the systemic glycemic levels. Liver being the primary organ to sense disproportionate dietary intake and linked physiological stress, stimulates ChREBP to perform the aforementioned processes.

View Article and Find Full Text PDF

In this paper we have proposed a fluorescence based spectroscopy device which can be used to quantitatively estimate the amount of albumin that gets excreted out of our body. Albumin is a significant protein in bio-fluids and performs a wide range of metabolic functions. The dye that has been used as a fluorescent indicator for the presence of albumin in this study has been earlier tested with bovine serum albumin (BSA) and human serum albumin (HSA) with satisfactory results.

View Article and Find Full Text PDF

The incidence of diabetes, obesity, and metabolic diseases has reached an epidemic status worldwide. Insulin resistance is a common link in the development of these conditions, and hyperinsulinemia is a central hallmark of peripheral insulin resistance. However, how hyperinsulinemia leads to systemic insulin resistance is less clear.

View Article and Find Full Text PDF

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the cause of Coronavirus Disease (COVID-19) that has resulted in a global pandemic. At the time of writing, approximately 16.06 million cases have been reported worldwide.

View Article and Find Full Text PDF

In the nematode , insulin signaling regulates development and aging in response to the secretion of numerous insulin peptides. Here, we describe a novel, non-signaling isoform of the nematode insulin receptor (IR), DAF-2B, that modulates insulin signaling by sequestration of insulin peptides. DAF-2B arises via alternative splicing and retains the extracellular ligand binding domain but lacks the intracellular signaling domain.

View Article and Find Full Text PDF

Despite its murderous act, carbon monoxide (CO) is found to be a very crucial small gaseous messenger molecule in dictating prime biological and physiological processes. Determination of endogenous or exhaled CO levels can throw significant light on smoking status and can be used as a breath biomarker of inflammatory diseases. Therefore, fluorescence imaging of CO in biofluids will empower one with the minute details of various disease states that involve CO.

View Article and Find Full Text PDF

Albumin is the most abundant serum protein and shows variation in its synthesis rate in different physiological and pathophysiological conditions. Thus, there might be an association expected between serum albumin concentration and body health. A library of NIR probes engineered with the optimum hydrophobicity has been developed and characterized using spectroscopy techniques and was employed to understand the variation of hepatic albumin synthesis rates on physiological and pathophysiological states.

View Article and Find Full Text PDF

Dysregulated hepatic de novo lipogenesis contributes to the pathogenesis of nonalcoholic fatty liver disease in both humans and rodents. Clinical evidence suggests fatty liver to have a positive correlation with serum lead (Pb ) levels. However, an exact mechanism of Pb -induced fatty liver progression is still unknown.

View Article and Find Full Text PDF

Insulin resistance is thought to be a common link between obesity and Non-Alcoholic Fatty Liver Disease (NAFLD). NAFLD has now reached epidemic status worldwide and identification of molecules or pathways as newer therapeutic strategies either to prevent or overcome insulin resistance seems critical. Dysregulated hepatic lipogenesis (DNL) is a hallmark of NAFLD in humans and rodents.

View Article and Find Full Text PDF

The glucagon-like peptide-1 receptor (GLP-1R) is a well-known target of therapeutics industries for the treatment of various metabolic diseases like type 2 diabetes and obesity. The structural-functional relationships of small molecule agonists and GLP-1R are yet to be understood. Therefore, an attempt was made on structurally known GLP-1R agonists (Compound 1, Compound 2, Compound A, Compound B, and (S)-8) to study their interaction with the extracellular domain of GLP-1R.

View Article and Find Full Text PDF

We demonstrate a strategy for the recognition of As in aqueous solution using a red-emissive probe based on a perylene-Cu ensemble decorated with peripheral free carboxyl functionality. Single crystal analysis helped us to understand the chemical structure of the probe. To the best of our knowledge, this is the first probe for arsenic detection which emits in the red region (λ = 600 nm).

View Article and Find Full Text PDF

Diabetes mellitus (T2DM) has become an epidemiologically important disease worldwide and is also becoming a great matter of concern due to the effects associated with it like: high morbidity, elevated health care cost and shortened life span. T2DM is a chronic metabolic disease characterized by insulin resistance as well as β-cell dysfunction. It is widely accepted that in the face of insulin resistance, euglycemia can be maintained by increase in pancreatic β-cell mass and insulin secretion.

View Article and Find Full Text PDF