Background: This study aimed to develop and validate a targeted next-generation sequencing (NGS) panel along with a data analysis algorithm capable of detecting single-nucleotide variants (SNVs) and copy number variations (CNVs) within the beta-globin gene cluster. The aim was to reduce the turnaround time in conventional genotyping methods and provide a rapid and comprehensive solution for prenatal diagnosis, carrier screening, and genotyping of β-thalassemia patients.
Methods And Results: We devised a targeted NGS panel spanning an 80.
Thalassemia is a hematological disorder caused by mutations in the hemoglobin gene, often necessitating regular blood transfusions. These frequent transfusions exert continuous pressure on patients' immune systems. Despite extensive research on the hematological aspects of thalassemia, few studies have explored the immune status of these patients.
View Article and Find Full Text PDFThalassemia is the most common inherited hemoglobinopathy worldwide. Variation of clinical symptoms in this hemoglobinopathy entails differences in disease-onset and transfusion requirements. The aim of this study was to investigate the role of α-globin gene deletions in modulating the clinical heterogeneity of β-thalassemia (β-thal) syndromes.
View Article and Find Full Text PDFBackground & Objectives: Multiple transfusions in β-thalassaemia patients undergoing regular transfusion regimen are at a risk of developing transfusion transmitted infections, including hepatitis C virus (HCV). The present study was conducted to investigate the association of HCV viraemia and genotype with clinical parameters in HCV seroreactive β-thalassaemic individuals.
Methods: A total of 172 HCV seroreactive β-thalassaemic individuals aged between 2-35 yr with at least 25 units of blood transfusion were catagorized into four groups (2-12 yr, group 1; 13-19 yr, group 2; 20-29 yr, group 3; 30-35 yr, group 4).
Background: Multitransfused thalassemic individuals are at high risk of developing transfusion transmitted Hepatitis C virus (HCV) infection. The aim of the study was to correlate the effects of host cytokine single nucleotide polymorphisms of TNF-α (-308 A/G) and IFN-γ (+874 A/T) in spontaneous or IFN induced treatment response in the HCV infected thalassemic individuals.
Methods: A total of 427 HCV sero-reactive thalassemic individuals were processed for HCV viral genomic diversity and host gene polymorphisms analysis of TNF-α (-308 A/G) and IFN-γ (+874 A/T).
The Wharton's Jelly (WJ) is an established source of mesenchymal stem cells (MSC). We compared 3 methods of extracting WJ-MSC from cryopreserved tissue and determined that enzymatic digestion of the WJ yielded the most viable MSC, compared to the explant and mechanical digestion methods. The enzymatically-released WJ-MSC conformed to the International Society for Cellular Therapy (ISCT) criteria: displayed plastic-adherence, co-expressed CD73, CD90, CD105 and were negative for hematopoietic lineage cell markers.
View Article and Find Full Text PDFBackground: Hepatitis C virus (HCV) is the major posttransfusion infection in multitransfused individuals in India with thalassemia major. To our knowledge, this study is the first conducted to correlate and comprehend the effects of the host interleukin (IL)28B gene polymorphism at loci rs12979860 and rs8099917 in spontaneous or interferon (IFN)-induced treatment response in the HCV-seroreactive individuals with thalassemia major.
Study Design And Methods: A total of 557 HCV-seroreactive individuals with thalassemia were processed for HCV viral genotyping and host IL28B single-nucleotide polymorphism analysis at loci rs12979860 and rs8099917.
Aims: Thalassemia is a common autosomal recessive blood disorder, which is most prevalent in South East Asian and Mediterranean populations. It is considered as a major health burden in the Indian population. The aims of the present study were to investigate the common, as well as uncommon, mutations responsible for thalassemia in the Bengali population.
View Article and Find Full Text PDFWe describe a novel C>T substitution at codon 53 of the HBB gene (HBB: c.161C>T). The proband was a transfusion-dependent β-thalassemia major (β-TM) patient.
View Article and Find Full Text PDF