Phylloquinon (PK) and menaquinones (MK) are both naturally occurring compounds belonging to vitamin K group. Present study aimed to comprehensively analyze the influence of PK in several models of vascular dysfunction to determine whether PK has vasoprotective properties, similar to those previously described for MK. Effects of PK and MK on endothelial dysfunction were studied in ApoE/LDLR mice in vivo, in the isolated aorta incubated with TNF, and in vascular cells as regard inflammation and cell senescence (including replicative and stress-induced models of senescence).
View Article and Find Full Text PDFAim: Protein disulfide isomerases (PDIs) are involved in platelet aggregation and intravascular thrombosis, but their role in regulating endothelial function is unclear. Here, we characterized the involvement of vascular PDIA1 in angiotensin II (Ang II)-induced endothelial dysfunction in mice.
Methods: Endothelial dysfunction was induced in C57BL/6JCmd male mice via Ang II subcutaneous infusion, and PDIA1 was inhibited with bepristat.
Ageing is a major risk factor for cancer metastasis but the underlying mechanisms remain unclear. Here, we characterised ageing effects on cancer-induced endothelial-mesenchymal transition (EndMT) in the pulmonary circulation of female BALB/c mice in a metastatic 4T1 breast cancer model. The effect of intravenously injected 4T1 cells on pulmonary endothelium, pulmonary metastasis, lung tissue architecture, and systemic endothelium was compared between 40-week-old and 20-week-old mice.
View Article and Find Full Text PDFAims: Endothelial dysfunction (ED) and red blood cell distribution width (RDW) are both prognostic factors in heart failure (HF), but the relationship between them is not clear. In this study, we used a unique mouse model of chronic HF driven by cardiomyocyte-specific overexpression of activated Gαq protein (Tgαq*44 mice) to characterize the relationship between the development of peripheral ED and the occurrence of structural nanomechanical and biochemical changes in red blood cells (RBCs).
Methods And Results: Systemic ED was detected in vivo in 8-month-old Tgαq*44 mice, as evidenced by impaired acetylcholine-induced vasodilation in the aorta and increased endothelial permeability in the brachiocephalic artery.
Angiotensin II (Ang II) induces hypertension and endothelial dysfunction, but the involvement of thrombin in these responses is not clear. Here, we assessed the effects of the inhibition of thrombin activity by dabigatran on Ang II-induced hypertension and endothelial dysfunction in mice with a particular focus on NO- and 20-HETE-dependent pathways. As expected, dabigatran administration significantly delayed thrombin generation (CAT assay) in Ang II-treated hypertensive mice, and interestingly, it prevented endothelial dysfunction development, but it did not affect elevated blood pressure nor excessive aortic wall thickening.
View Article and Find Full Text PDFHyperglycemia linked to diabetes results in endothelial dysfunction. In the present work, we comprehensively characterized effects of short-term hyperglycemia induced by administration of an insulin receptor antagonist, the S961 peptide, on endothelium and perivascular adipose tissue (PVAT) in mice. Endothelial function of the thoracic and abdominal aorta in 12-week-old male C57Bl/6Jrj mice treated for two weeks with S961 infusion via osmotic pumps was assessed in vivo using magnetic resonance imaging and ex vivo by detection of nitric oxide (NO) production using electron paramagnetic resonance spectroscopy.
View Article and Find Full Text PDFArterial hypertension is one of the major health risk factors leading to coronary artery disease, stroke or peripheral artery disease. Dietary uptake of inorganic nitrite (NO) and nitrate (NO) via vegetables leads to enhanced vascular NO bioavailability and provides antihypertensive effects. The present study aims to understand the underlying vasoprotective effects of nutritional NO and NO co-therapy in mice with angiotensin-II (AT-II)-induced arterial hypertension.
View Article and Find Full Text PDFBackground Long-term feeding with a high-fat diet (HFD) induces endothelial dysfunction in mice, but early HFD-induced effects on endothelium have not been well characterized. Methods and Results Using an magnetic resonance imaging-based methodology that allows characterization of endothelial function in vivo, we demonstrated that short-term (2 weeks) feeding with a HFD to mice or to mice resulted in the impairment of acetylcholine-induced response in the abdominal aorta (AA), whereas, in the thoracic aorta (TA), the acetylcholine-induced response was largely preserved. Similarly, HFD resulted in arterial stiffness in the AA, but not in the TA.
View Article and Find Full Text PDFLong-term administration of acetylsalicylic acid (ASA) was effective in prevention of colorectal cancer, whereas the efficacy of this compound in other cancer types, including breast cancer, has been less convincingly documented. Indeed, the antimetastatic effect of low-dose ASA was observed only in the early intravascular phase of metastasis of breast cancer. In the present work, we characterized the effects of long-term treatment with ASA on the late phase of pulmonary metastasis in a mouse orthotopic 4T1 breast cancer model.
View Article and Find Full Text PDFPremature senescence, a death escaping pathway for cells experiencing stress, is conducive to aging and cardiovascular diseases. The molecular switch between senescent and apoptotic fate remains, however, poorly recognized. Nrf2 is an important transcription factor orchestrating adaptive response to cellular stress.
View Article and Find Full Text PDFAlthough, vitamin K displays vasoprotective effects, it is still not known whether K treatment improves endothelial function. In ApoE/LDLR mice at the stage prior to atherosclerosis development, four-week treatment with K-MK-7, given at a low dose (0.05 mg/kg), improved acetylcholine- and flow-induced, endothelium-dependent vasodilation in aorta or in femoral artery, as assessed by MRI in vivo.
View Article and Find Full Text PDFDetection of free radicals in tissues is challenging. Most approaches rely on incubating excised sections or homogenates with reagents, typically at supraphysiologic oxygen tensions, to finally detect surrogate, nonspecific end products. In the present work, we explored the potential of using intravenously (i.
View Article and Find Full Text PDFBackground The impairment of endothelium-dependent vasodilation, increased endothelial permeability, and glycocalyx degradation are all important pathophysiological components of endothelial dysfunction. However, it is still not clear whether in atherosclerosis, glycocalyx injury precedes other features of endothelial dysfunction or these events coincide. Methods and Results Herein, we demonstrate that in 4- to 8-week-old apolipoprotein E/low-density lipoprotein receptor-deficient mice, at the stage before development of atherosclerotic plaques, impaired acetylcholine-induced vasodilation, reduced NO production in aorta, and increased endothelial permeability were all observed; however, flow-mediated dilation in the femoral artery was fully preserved.
View Article and Find Full Text PDFThe role of nitric oxide (NO) in tumour progression and metastasis is not clear, therefore the present work aimed to better characterise the effects of nitric oxide synthase (NOS) inhibition by L-N-nitroarginine methyl ester (L-NAME) on primary tumour growth, pulmonary metastasis, inflammatory state and prostacyclin (PGI)/thromboxane A (TXA) balance in a 4T1 murine model of breast cancer. To distinguish effects of NO deficiency on disease development, 4T1 cancer cells were administered orthotopically or intravenously to Balb/c mice. The systemic NO bioavailability, pulmonary inflammation and plasma levels of thromboxane B (TXB) and 6-keto-prostaglandin F (6-keto-PGF) were assessed.
View Article and Find Full Text PDFEndothelial dysfunction is recognized as a critical condition in the development of cardiovascular disorders. This multifactorial process involves changes in the biochemical and mechanical properties of endothelial cells leading to disturbed release of vasoprotective mediators. Hypercholesterolemia and increased stiffness of the endothelial cortex are independently shown to result in reduced release of nitric oxide and thus endothelial dysfunction.
View Article and Find Full Text PDFThe work presents the complementary approach to characterize the formation of various Hb species inside isolated human RBCs exposed to NO, with a focus on the formed Hb-NO adducts. This work presents a complementary approach based on Resonance Raman Spectroscopy (RRS) supported by Blood Gas Analysis, Electron Paramagnetic Resonance Spectroscopy, UV-Vis Absorption Spectroscopy and Mössbauer Spectroscopy to characterize the formation of various Hb species, with a focus on the Hb-NO adducts formed inside isolated human RBCs exposed to NO, under the experimental conditions of low and high levels of oxygen Hb saturation. In the present work, we induced Hb-NO adducts using PAPA-NONOate, a NO-donor with known chemistry and kinetics of NO release, and confirmed the formation of Hb-NO adducts in RBCs incubated with Human Aortic Endothelial Cells (HAECs) stimulated to produce NO.
View Article and Find Full Text PDFBackground: Mesenchymal transformation of pulmonary endothelial cells contributes to the formation of a metastatic microenvironment, but it is not known whether this precedes or follows early metastasis formation. In the present work, we characterize the development of nitric oxide (NO) deficiency and markers of endothelial-mesenchymal transition (EndMT) in the lung in relation to the progression of 4T1 metastatic breast cancer injected orthotopically in mice.
Methods: NO production, endothelial nitric oxide synthase (eNOS) phosphorylation status, markers of EndMT in the lung, pulmonary endothelium permeability, and platelet activation/reactivity were analyzed in relation to the progression of 4T1 breast cancer metastasis to the lung, as well as to lung tissue remodeling, 1-5 weeks after 4T1 cancer cell inoculation in Balb/c mice.
Recent studies suggest both beneficial and detrimental role of increased reactive oxygen species and oxidative stress in heart failure (HF). However, it is not clear at which stage oxidative stress and oxidative modifications occur in the endothelium in relation to cardiomyocytes in non-ischemic HF. Furthermore, most methods used to date to study oxidative stress are either non-specific or require tissue homogenization.
View Article and Find Full Text PDFBackground: Patients with cancer develop endothelial dysfunction and subsequently display a higher risk of cardiovascular events. The aim of the present work was to examine changes in nitric oxide (NO)- and prostacyclin (PGI)-dependent endothelial function in the systemic conduit artery (aorta), in relation to the formation of lung metastases and to local and systemic inflammation in a murine orthotopic model of metastatic breast cancer.
Methods: BALB/c female mice were orthotopically inoculated with 4T1 breast cancer cells.
Platelet inhibition has been considered an effective strategy for combating cancer metastasis and compromising disease malignancy although recent clinical data provided evidence that long-term platelet inhibition might increase incidence of cancer deaths in initially cancer-free patients. In the present study we demonstrated that dual anti-platelet therapy based on aspirin and clopidogrel (ASA+Cl), a routine regiment in cardiovascular patients, when given to cancer-bearing mice injected orthotopically with 4T1 breast cancer cells, promoted progression of the disease and reduced mice survival in association with induction of vascular mimicry (VM) in primary tumour. In contrast, treatment with ASA+Cl or platelet depletion did reduce pulmonary metastasis in mice, if 4T1 cells were injected intravenously.
View Article and Find Full Text PDFIntroduction: An acute bout of strenuous exercise in humans results in transient impairment of nitric oxide (NO)-dependent function, but it remains unknown whether this phenomenon is associated with increased risk of thrombotic events after exercise. This study aimed to evaluate effects of a single bout of exhaustive running in mice on the balance of vascular NO/reactive oxygen species production, and on thrombogenicity.
Methods: At different time points (0, 2, and 4 h) after exercise and in sedentary C57BL/6 mice, the production of NO and superoxide (O2) in aorta was measured by electron paramagnetic resonance spin trapping and by dihydroethidium/high-performance liquid chromatography-based method, respectively, whereas collagen-induced thrombus formation was analyzed in a microchip-based flow-chamber system (total thrombus-formation analysis system).
Carbon monoxide-releasing molecules (CO-RMs) induce nitric oxide (NO) release (which requires NADPH), and Ca -dependent signalling; however, their contribution in mediating endothelial responses to CO-RMs is not clear. Here, we studied the effects of CO liberated from CORM-401 on NO production, calcium signalling and pentose phosphate pathway (PPP) activity in human endothelial cell line (EA.hy926).
View Article and Find Full Text PDFIt has been repeatedly shown that regular aerobic exercise exerts beneficial effects on incidence and progression of cancer. However, the data regarding effects of exercise on metastatic dissemination remain conflicting. Therefore, in the present study the possible preventive effects of voluntary wheel running on primary tumor growth and metastases formation in the model of spontaneous pulmonary metastasis were analyzed after orthotopic injection of 4T1 breast cancer cells into mammary fat pads of female Balb/C mice.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2017
In humans, short-term supplementation with nitrate is hypotensive and inhibits platelet aggregation via an nitric oxide (NO)-dependent mechanism. In the present work, we analyzed whether short-term treatment with nitrate induces antithrombotic effects in rats and mice. Arterial thrombosis was evoked electrically in a rat model in which renovascular hypertension was induced by partial ligation of the left renal artery.
View Article and Find Full Text PDFA large conductance potassium (BKCa) channel opener, NS1619 (1,3-dihydro-1- [2-hydroxy-5-(trifluoromethyl) phenyl]-5-(trifluoromethyl)-2H-benzimidazole-2-one), is well known for its protective effects against ischemia-reperfusion injury; however, the exact mode of its action remains unclear. The aim of this study was to characterize the effect of NS1619 on endothelial cells. The endothelial cell line EA.
View Article and Find Full Text PDF