The ion binding to the lipid/water interface can substantially influence the structural, functional, and dynamic properties of the cell membrane. Despite extensive research on ion-lipid interactions, the specific effects of ion binding on the polarity and hydration at the lipid/water interface remain poorly understood. This study explores the influence of three biologically relevant divalent cations─Mg, Ca, and Zn─on the depth-dependent interfacial polarity and hydration of zwitterionic DPPC lipid in its gel phase at room temperature.
View Article and Find Full Text PDFIn the present study, one mononuclear Cu(II) [CuL(SCN)] (1) and one mononuclear Co(II) [CoLN] (2) complexes, with a Schiff base ligand (HL) formed by condensation of 2-picolylamine and salicylaldehyde, have been successfully developed and structurally characterized. The square planer geometry of both complexes is fulfilled by the coordination of one deprotonated ligand and one ancillary ligand SCN(1) or N(2) to the metal centre. Binding affinities of both complexes with deoxyribonucleic acid (DNA) and human serum albumin (HSA) are investigated using several biophysical and spectroscopic techniques.
View Article and Find Full Text PDFIn the current study, one new quercetin-based Zn(II) complex [Zn(Qr)(CNNCN)(HO)] (Complex ) which is developed by condensation of quercetin with ZnCl in the presence of NaN(CN) and Cu(II) complex [Cu(Qr)N(CHOH)(HO)] (complex ) which is developed by the condensation reaction of quercetin and CuCl in presence of NaN are thoroughly examined in relation to their use in biomedicine. The results of several spectroscopic studied confirm the structure of both the complexes and the Density Functional Theory (DFT) study helps to optimize the structure of complex 1 and 2. After completion of the identification process, DNA and Human Serum Albumin (HSA) binding efficacy of both the investigated complexes are performed by implementing a long range of biophysical studies and a thorough analysis of the results unveils that complex has better interaction efficacy with the macromolecules than complex .
View Article and Find Full Text PDFJ Photochem Photobiol B
January 2020
A potential strategy has been demonstrated, for the first time, for switching the mode of delivery of drugs or small molecular systems from endogenous to exogenous, simply by engineering the chain length of micellar carriers. Ethidium bromide (EB) is exploited as the model drug which has been successfully delivered to natural DNA through endogenous and exogenous modes by tuning the chain length of anionic sodium n-alkyl sulfate micelles. β-cyclodextrin (β-CD) is exploited as an extrinsic stimulant for the exogenous delivery of EB to DNA.
View Article and Find Full Text PDFMedicine is a natural companion of mankind in the present era for mere survival from the deadly diseases in ever-increasing polluted environments. Hence, in recent years, major focus of pharmaceutical, medicinal and biophysical research has been navigated in exploring and developing new and simple avenues to enhance the efficacy of the administered drugs on one hand and to get rid of, or at least reduce, the toxic side effects of the excess drugs accumulated in human body on the other. A potential approach to amplify the efficacy of the administered drug is to develop proficient targeted drug delivery systems (DDSs).
View Article and Find Full Text PDFMolecular interactions and binding of probes/drugs with biomacromolecular systems are of fundamental importance in understanding the mechanism of action and hence designing of proactive drugs. In the present study, binding interactions of a biologically potent fluorophore, (E)-1,5-diphenyl-3-styryl-4,5-dihydro-1H-pyrazole (DSDP) with two serum transport proteins, human serum albumin and bovine serum albumin, have been investigated exploiting multi-spectroscopic techniques. The spectrophotometric and fluorometric studies together with fluorescence quenching, fluorescence anisotropy, urea induced denaturation studies and fluorescence lifetime measurements reveal strong binding of DSDP with both the plasma proteins.
View Article and Find Full Text PDFPhotophysics of 9,9'-anthril have been investigated at room temperature and cryogen phase (77 K) exploiting steady state and time-resolved emission techniques together with quantum chemical calculations. Absorption spectra, emission spectra, and emission lifetimes of anthril have been recorded and analyzed in polar ethanol and nonpolar methylcyclohexane media. Both room temperature and cryogenic experiments reveal a single emission band upon excitation at the nπ* absorption band whereas on exciting the system at the ππ* band, dual emission bands have been observed.
View Article and Find Full Text PDFLuminescent materials possessing both the mechanoluminescence (MCL) and electroluminescence (EL) properties are the quest for sensing and optoelectronic applications. We report on the synthesis of a new tailor-made luminogen, 1,2-bis(4-(1-([1,1'-biphenyl]-4-yl)-2,2-diphenylvinyl)phenyl)-1,2-diphenylethene (TPE 5), using Suzuki coupling reaction with high yield. An aggregation-induced emission (AIE) active complex TPE 5 forms supramolecular spherical aggregates at the air-water interface of a Langmuir trough.
View Article and Find Full Text PDFDeoxyribonuclic acid (DNA) is the most relevant intracellular target for a wide variety of anticancer and antibiotic drugs. Elucidating the binding interaction of small bioactive molecules with DNA provides a structural guideline for designing new drugs with improved selectivity and superior clinical efficacy. In the present work interaction of a newly synthesized biologically relevant fluorophore, namely, (E)-1,5-diphenyl-3-styryl-4,5-dihydro-1H-pyrazole (DSDP) with calf thymus DNA (ctDNA) has been investigated vividly through a number of in vitro studies.
View Article and Find Full Text PDFThe detailed photophysics of (E)-1,5-diphenyl-3-styryl-4,5-dihydro-1H-pyrazole (DSDP) and (E)-1,5-diphenyl-3-styryl-1H-pyrazole (DSP) has been investigated and compared to demonstrate the drastic modification of the photophysics upon dehydrogenation of the pyrazoline ring. While DSDP gives dual absorption and dual emission bands corresponding to the locally excited (LE) and the intramolecular charge transfer (ICT) species, DSP yields single absorption and emission bands for the locally excited species only. Comparative steady state and time resolved fluorometric studies reveal that aromatization of the pyrazoline ring inhibits the formation of the ICT species.
View Article and Find Full Text PDFThe photophysics of 2,2'-pyridil has been explored thoroughly using steady state and time resolved fluorometric techniques at room temperature (RT) in liquid media as well as in glassy matrices at cryogenic temperature (77 K). Ethanol and methylcyclohexane are exploited for this purpose, as polar and non-polar media respectively. Notwithstanding the observation of multiple emissions from the fluorophore, the experiments unequivocally rule out emission from excited singlet states other than the S state, consistent with Kasha's rule.
View Article and Find Full Text PDFSteady state and time resolved spectroscopic measurements have been exploited to assign the emissions from different conformations of α-furil (2, 2'-furil) in solution phase at room temperature as well as cryogen (liquid nitrogen, LN2) frozen matrices of ethanol and methylcyclohexane. Room temperature studies reveal a single fluorescence from the trans-planar conformer of the fluorophore or two fluorescence bands coming from the trans-planar and the relaxed skew forms depending on excitation at the nπ(∗) or the ππ(∗) absorption band, respectively. Together with the fluorescence bands, the LN2 studies in both the solvents unambiguously ascertain two phosphorescence emissions with lifetimes 5 ± 0.
View Article and Find Full Text PDFStructural influence on the photophysical behavior of two pairs of molecular systems from the biologically potent benzoquinoline family, namely, dimethyl-3-(4-chlorophenyl)-3,4-dihydrobenzo[f]-quinoline-1,2-dicarboxylate, dimethyl-3-(2,6-dichlorophenyl)-3,4-dihydrobenzo[f]quinoline-1,2-dicarboxylate and their corresponding dehydrogenated analogues has been investigated exploiting experimental as well as computational techniques. The study unveils that dehydrogenation in the heterocyclic rings of the studied quinoline derivatives modifies their photophysics radically. Experimental observations imply that the photophysical behavior of the dihydro analogues is governed by the intramolecular charge transfer (ICT) process.
View Article and Find Full Text PDFIn this article, we have addressed to a demanding physicochemical aspect of therapeutic and drug research. We have reported a simple yet prospective technique that can be exploited for the controlled delivery of drugs and/or bioactive small molecules to the most relevant biomolecular target DNA. Exploiting various steady state and time resolved spectroscopic techniques together with the DNA helix melting study, we have shown that a biologically significant photosensitizer, namely, phenosafranin (PSF), can be quantitatively transferred to the DNA from the micellar nanocarrier made up of sodium tetradecyl sulfate (STS) using the external stimulant β-cyclodextrin (β-CD).
View Article and Find Full Text PDFThe binding interaction of a potential nervous system stimulant, 3-acetyl-4-oxo-6,7-dihydro-12H-indolo-[2,3-a]-quinolizine (AODIQ), with calf-thymus DNA (ctDNA) has been explored thoroughly. The modified photophysics of the fluorescent molecule within the microheterogeneous biomacromolecular system has been exploited to divulge the drug-DNA binding interaction. The absorption and various fluorometric measurements together with the fluorescence quenching, urea-induced denaturation study, circular dichroism and DNA-melting studies unequivocally ascertain the mode of binding of the drug with the DNA to be groove binding.
View Article and Find Full Text PDFInteraction of cationic phenosafranin (PSF), anionic 8-anilino-1-naphthalene sulfonate (ANS) and non-ionic nile red (NR) have been studied with the zwitterionic phospholipid, egg yolk L-α-phosphatidylcholine (EYPC). The study reveals discernible binding interactions of the three fluorescent probes with the EYPC lipid vesicle. Once the binding of the probes with the lipid is established, the effect of cyclic oligosaccharide, β-cyclodextrin (β-CD), on these lipid bound probes has been investigated.
View Article and Find Full Text PDF