Publications by authors named "Prokopuk N"

Si nanowires (NWs) integrated in a field effect transistor device structure are characterized using scanning electron (SEM), atomic force, and scanning Kelvin probe force (KPFM) microscopy. Reactive ion etching (RIE) and vapor-liquid-solid (VLS) growth were used to fabricate NWs between predefined electrodes. Characterization of Si NWs identified defects and/or impurities that affect the surface electronic structure.

View Article and Find Full Text PDF

Techniques for fabricating nanospaced electrodes suitable for studying electron tunneling through metal-molecule-metal junctions are described. In one approach, top contacts are deposited/placed on a self-assembled monolayer or Langmuir-Blodgett film resting on a conducting substrate, the bottom contact. The molecular component serves as a permanent spacer that controls and limits the electrode separations.

View Article and Find Full Text PDF

Fluorescent lanthanide complexes were synthesized using a non-phenolic analog of curcumin as the principal chromophoric chelating ligand. Sensitized, near-infrared fluorescence is observed in these complexes as a result of photo-excitation of the chromophoric ligands, population of the molecular triplet state, and transfer of energy to the emitting lanthanide ion. For the purpose of intra-molecular energy transfer, the triplet states of curcuminoid ligands are more favorably matched with the excited electronic states of neodymium and ytterbium ions than those associated with less conjugated beta-diketonate ligands.

View Article and Find Full Text PDF

Two sequential electrochemical reductions occur for the cluster anion [Ta(6)Cl(12)(OSO(2)CF(3))(6)](2)(-) at 0.89 and 0.29 V vs Ag/AgCl, with the generation [Ta(6)Cl(12)(OSO(2)CF(3))(6)](3)(-) and [Ta(6)Cl(12)(OSO(2)CF(3))(6)](4)(-).

View Article and Find Full Text PDF

The tosylate (p-toluenesulfonate) cluster [Bu4N]2[W6Cl8(p-OSO2C6H4CH3)6] (1) has been prepared and characterized by IR and NMR spectroscopy, elemental analysis, and an X-ray crystal structure. This cluster complex is shown to be a useful starting material for the preparation of pseudohalide clusters, [Bu4N]2[W6Cl8(NCQ)6] (Q = O (2), S (3), and Se (4)), in high yields. Cluster 1 also serves as a precursor to the new cluster compounds: [Bu4N]2[W6Cl8(O2CCH3)6] (5), [Bu4N]2[W6Cl8((mu-NC)Mn(CO)2(C5H5))6] (6), [W6Cl8((mu-NC)Ru(PPh3)2(C5H5))6][ p-OSO2C6H4CH3]4 (7), and [W6Cl8((mu-NC)Os(PPh3)2(C5H5))6][ p-OSO2C6H4CH3]4 (8).

View Article and Find Full Text PDF