Publications by authors named "Prokhnenko O"

In quantum magnetic materials, ordered phases induced by an applied magnetic field can be described as the Bose-Einstein condensation (BEC) of magnon excitations. In the strongly frustrated system SrCu(BO), no clear magnon BEC could be observed, pointing to an alternative mechanism, but the high fields required to probe this physics have remained a barrier to detailed investigation. Here we exploit the first purpose-built high-field neutron scattering facility to measure the spin excitations of SrCu(BO) up to 25.

View Article and Find Full Text PDF

The extremely overdoped cuprates are generally considered to be Fermi liquid metals without exotic orders, whereas the underdoped cuprates harbor intertwined states. Contrary to this conventional wisdom, using Cu L_{3}-edge and O K-edge resonant x-ray scattering, we reveal a charge order (CO) correlation in overdoped La_{2-x}Sr_{x}CuO_{4} (0.35≤x≤0.

View Article and Find Full Text PDF

Bragg diffracted intensities and values for crystalline structures with long repeat distances may be obtained by small-angle neutron scattering (SANS) investigations. An account is given of the methods, advantages and disadvantages of obtaining such data by the multichromatic time-of-flight method, compared with the more traditional quasi-monochromatic SANS method. This is illustrated with data obtained from high-magnetic-field measurements on magnetic vortex line lattices in superconductors on the former HFM/EXED instrument at Helmholtz-Zentrum Berlin.

View Article and Find Full Text PDF

We present a combined experimental and theoretical study of the mineral atacamite Cu_{2}Cl(OH)_{3}. Density-functional theory yields a Hamiltonian describing anisotropic sawtooth chains with weak 3D connections. Experimentally, we fully characterize the antiferromagnetically ordered state.

View Article and Find Full Text PDF

The Extreme Environment Diffractometer was a neutron time-of-flight instrument equipped with a constant-field hybrid magnet providing magnetic fields up to 26 T. The magnet infrastructure and sample environment imposed limitations on the geometry of the experiment, making it necessary to plan the experiment with care. is the software tool developed to allow users of the instrument to find the optimal sample orientation for their diffraction experiment.

View Article and Find Full Text PDF

A detailed diffraction study of CaCrO is presented which adds significant new insights into the structural and magnetic properties of this compound. A new crystal structure type was used where the a and b axes are doubled compared to previous models providing a more plausible structure where all crystallographic sites are fully occupied. The presence of two different valences of chromium was verified and the locations of the magnetic Cr and non-magnetic Cr ions were identified.

View Article and Find Full Text PDF

The Extreme Environment Diffractometer (EXED) is a new neutron time-of-flight instrument at the BER II research reactor at the Helmholtz-Zentrum Berlin, Germany. Although EXED is a special-purpose instrument, its early construction made it available for users as a general-purpose diffractometer. In this respect, EXED became one of the rare examples, where the performance of a time-of-flight diffractometer at a continuous source can be characterized.

View Article and Find Full Text PDF

We report on diffraction measurements on multiferroic TbMnO(3) which demonstrate that the Tb- and Mn-magnetic orders are coupled below the ferroelectric transition T(FE) = 28 K. For T View Article and Find Full Text PDF

Neutron powder diffraction and single crystal x-ray resonant magnetic scattering measurements suggest that Dy plays an active role in enhancing the ferroelectric polarization in multiferroic DyMnO3 above T(Dy)(N)=6.5 K. We observe the evolution of an incommensurate ordering of Dy moments with the same periodicity as the Mn spiral ordering.

View Article and Find Full Text PDF

In this Letter we present direct observation of the Fe helimagnetism in an Y2Fe17 single crystal under pressure. Combined neutron diffraction and magnetization measurements under pressure showed that the collinear ferromagnetic phase of Y2Fe17 is substituted by the pressure induced helical incommensurate phases. The complex pressure-temperature-field behavior of the pressure induced helical magnetic phases is attributed to intrinsic properties of the iron sublattice that gives a valuable contribution to the discussion about dominating theoretical models of magnetism in gamma-Fe.

View Article and Find Full Text PDF

Effects of temperature and pressure on magnetic, elastic, structural, and thermal properties of Tb5Si2Ge2 have been studied by means of macroscopic (thermal expansion and magnetization) and microscopic (neutron powder diffraction) techniques. We present evidence that the high-temperature second-order ferromagnetic transition can be coupled with the low-temperature first-order structural phase change into a single first-order magnetic-crystallographic transformation at and above a tricritical point in the vicinity of 8.6 kbar.

View Article and Find Full Text PDF