Publications by authors named "Prodromakis T"

Implantable devices hold the potential to address conditions currently lacking effective treatments, such as drug-resistant neural impairments and prosthetic control. Medical devices need to be biologically compatible while providing enhanced performance metrics of low-power consumption, high accuracy, small size, and minimal latency to enable ongoing intervention in brain function. Here, we demonstrate a memristor-based processing system for single-trial detection of behaviorally meaningful brain signals within a timeframe that supports real-time closed-loop intervention.

View Article and Find Full Text PDF

Brain-inspired resistive random-access memory (RRAM) technology is anticipated to outperform conventional flash memory technology due to its performance, high aerial density, low power consumption, and cost. For RRAM devices, metal oxides are exceedingly investigated as resistive switching (RS) materials. Among different oxides, tin oxide (SnO) received minimal attention, although it possesses excellent electronic properties.

View Article and Find Full Text PDF

The modern IC supply chain encompasses a large number of steps and manufacturers. In many applications it is critically important that chips are of the right quality and are assured to have been obtained from the legitimate supply chain. To this end, it is necessary to be able to uniquely identify systems to aid in supply chain tracking and quality assurance.

View Article and Find Full Text PDF

Memristive technologies promise to have a large impact on modern electronics, particularly in the areas of reconfigurable computing and artificial intelligence (AI) hardware. Meanwhile, the evolution of memristive materials alongside the technological progress is opening application perspectives also in the biomedical field, particularly for implantable and lab-on-a-chip devices where advanced sensing technologies generate a large amount of data. Memristive devices are emerging as bioelectronic links merging biosensing with computation, acting as physical processors of analog signals or in the framework of advanced digital computing architectures.

View Article and Find Full Text PDF

Electronic systems are becoming more and more ubiquitous as our world digitises. Simultaneously, even basic components are experiencing a wave of improvements with new transistors, memristors, voltage/current references, data converters, etc, being designed every year by hundreds of R &D groups world-wide. To date, the workhorse for testing all these designs has been a suite of lab instruments including oscilloscopes and signal generators, to mention the most popular.

View Article and Find Full Text PDF

Biological synapses store multiple memories on top of each other in a palimpsest fashion and at different time scales. Palimpsest consolidation is facilitated by the interaction of hidden biochemical processes governing synaptic efficacy during varying lifetimes. This arrangement allows idle memories to be temporarily overwritten without being forgotten, while previously unseen memories are used in the short term.

View Article and Find Full Text PDF

Memristors, when utilized as electronic components in circuits, can offer opportunities for the implementation of novel reconfigurable electronics. While they have been used in large arrays, studies in ensembles of devices are comparatively limited. Here we propose a vertically stacked memristor configuration with a shared middle electrode.

View Article and Find Full Text PDF

Resistive switching (RS) devices are emerging electronic components that could have applications in multiple types of integrated circuits, including electronic memories, true random number generators, radiofrequency switches, neuromorphic vision sensors, and artificial neural networks. The main factor hindering the massive employment of RS devices in commercial circuits is related to variability and reliability issues, which are usually evaluated through switching endurance tests. However, we note that most studies that claimed high endurances >10 cycles were based on resistance cycle plots that contain very few data points (in many cases even <20), and which are collected in only one device.

View Article and Find Full Text PDF

Over the past decade, memristors have been extensively studied for a number of applications, almost exclusively with DC characterization techniques. Studies of memristors in AC circuits are sparse, with only a few examples found in the literature, and characterization methods with an AC input are also sparingly used. However, publications concerning the usage of memristors in this working regime are currently on the rise.

View Article and Find Full Text PDF

There is an increasing interest for alternative ways to program memristive devices to arbitrary resistive levels. Among them, light-controlled programming approach, where optical input is used to improve or to promote the resistive switching, has drawn particular attention. Here, we present a straight-forward method to induce resistive switching to a memristive device, introducing a new version of a metal-oxide memristive architecture coupled with a UV-sensitive hybrid top electrode obtained through direct surface treatment with PEDOT:PSS of an established resistive random access memory platform.

View Article and Find Full Text PDF

In this work, soft microgels of Poly(-Isopropylacrylamide) (PNIPAm) at two different sizes and of interpenetrated polymer network (IPN) composed of PNIPAm and Poly(Acrylic Acid) (PAAc) were synthesized. Then, solutions of these different types of microgels have been spin-coated on glass substrates with different degrees of hydrophobicity. PNIPAm particles with a larger diameter form either patches or a continuous layer, where individual particles are still distinct, depending on the dispersion concentration and spin speed.

View Article and Find Full Text PDF

Medical interventions increasingly rely on biosensors that can provide reliable quantitative information. A longstanding bottleneck in realizing this, is various non-idealities that generate offsets and variable responses across sensors. Current mitigation strategies involve the calibration of sensors, performed in software or via auxiliary compensation circuitry thus constraining real-time operation and integration efforts.

View Article and Find Full Text PDF

Surface acoustic wave (SAW) resonators are low cost devices that can operate wirelessly on a received radio frequency (RF) signal with no requirement for an additional power source. Multiple SAW resonators operating as transponders that form a wireless sensor network (WSN), often need to operate at tightly spaced, different frequencies inside the industrial, scientific and medical (ISM) bands. This requires nanometer precision in the design and fabrication processes.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Poly(N-isopropylacrylamide) (PNIPAm) is widely used to fabricate cell sheet surfaces for cell culturing, however copolymer and interpenetrated polymer networks based on PNIPAm have been rarely explored in the context of tissue engineering. Many complex and expensive techniques have been employed to produce PNIPAm-based films for cell culturing. Among them, spin coating has demonstrated to be a rapid fabrication process of thin layers with high reproducibility and uniformity.

View Article and Find Full Text PDF

Brain function relies on circuits of spiking neurons with synapses playing the key role of merging transmission with memory storage and processing. Electronics has made important advances to emulate neurons and synapses and brain-computer interfacing concepts that interlink brain and brain-inspired devices are beginning to materialise. We report on memristive links between brain and silicon spiking neurons that emulate transmission and plasticity properties of real synapses.

View Article and Find Full Text PDF

One of the main, long-term objectives of artificial intelligence is the creation of thinking machines. To that end, substantial effort has been placed into designing cognitive systems; i.e.

View Article and Find Full Text PDF

The emergence of memristor technologies brings new prospects for modern electronics via enabling novel in-memory computing solutions and energy-efficient and scalable reconfigurable hardware implementations. Several competing memristor technologies have been presented with each bearing distinct performance metrics across multi-bit memory capacity, low-power operation, endurance, retention and stability. Application needs however are constantly driving the push towards higher performance, which necessitates the introduction of a standard benchmarking procedure for fair evaluation across distinct key metrics.

View Article and Find Full Text PDF

We investigate the effects of Line Edge Roughness (LER) of electrode lines on the uniformity of Resistive Random Access Memory (ReRAM) device areas in cross-point architectures. To this end, a modeling approach is implemented based on the generation of 2D cross-point patterns with predefined and controlled LER and pattern parameters. The aim is to evaluate the significance of LER in the variability of device areas and their performances and to pinpoint the most critical parameters and conditions.

View Article and Find Full Text PDF

In cardiac tissue engineering (TE), in vitro models are essential for the study of healthy and pathological heart tissues in order to understand the underpinning mechanisms. In this scenario, scaffolds are platforms that can realistically mimic the natural architecture of the heart, and they add biorealism to in vitro models. This paper reports a novel and robust technique to fabricate cardiovascular-mimetic scaffolds based on Parylene C and Polydimethylsiloxane (PDMS).

View Article and Find Full Text PDF

Resistive random access memories (RRAMs) can be programmed to discrete resistive levels on demand via voltage pulses with appropriate amplitude and widths. This tuneability enables the design of various emerging concepts, to name a few: neuromorphic applications and reconfigurable circuits. Despite the wide interest in RRAM technologies there is still room for improvement and the key lies with understanding better the underpinning mechanism responsible for resistive switching.

View Article and Find Full Text PDF

Fast, efficient and more importantly accurate serial dilution is a necessary requirement for most biochemical microfluidic-based quantitative diagnostic applications. Over the last two decades, a multitude of microfluidic devices has been proposed, each one demonstrating either a different type of dilution technique or complex system architecture based on various flow source and valving combinations. In this work, a novel serial dilution network architecture is demonstrated, implemented on two entirely different substrates for validation and performance characterisation.

View Article and Find Full Text PDF