HYD1 is an all D-amino acid linear 10-mer peptide that was discovered by one-bead-one-compound screening. HYD1 has five hydrophobic amino acids flanked by polar amino acids. Alanine scanning studies showed that alternating hydrophobic amino acid residues and N- and C-terminal lysine side chains were contributors to the biological activity of the linear 10-mer analogs.
View Article and Find Full Text PDFThe high mechanical strength and long-term resistance to the fibrous capsule formation are two major challenges for implantable materials. Unfortunately, these two distinct properties do not come together and instead compromise each other. Here, we report a unique class of materials by integrating two weak zwitterionic hydrogels into an elastomer-like high-strength pure zwitterionic hydrogel via a "swelling" and "locking" mechanism.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2020
Angew Chem Int Ed Engl
December 2020
Inspired by the amino acid composition of natural protein surfaces, we developed a zwitterionic cloak containing multi-layers of short alternating glutamic acid and lysine (EK) peptides as a facile, highly effective and low-immunogenicity approach for the protection and delivery of biotherapeutics. Each EK layer grafted to proteins provides multiple times of new lysine reaction sites for the growth of subsequent EK layers. This unique design allows EK peptides to achieve high coating density on proteins, overcoming the limitation of traditional conjugation strategies that rely on the number of innate lysine groups.
View Article and Find Full Text PDFSuperhydrophilic zwitterionic polymers are a class of nonfouling materials capable of effectively resisting any nonspecific interactions with biological systems. We designed here a functional zwitterionic polymer that achieves a trade-off between nonspecific interactions providing the nonfouling property and a specific interaction for bioactive functionality. Built from phosphoserine, an immune-signaling molecule in nature, this zwitterionic polymer exhibits both nonfouling and immunomodulatory properties.
View Article and Find Full Text PDFThe shelf-life of human platelets preserved in vitro for therapeutic transfusion is limited because of bacterial contamination and platelet storage lesion (PSL). The PSL is the predominant factor and limiting unfavorable interactions between the platelets and the non-biocompatible storage bag surfaces is the key to alleviate PSL. Here we describe a surface modification method for biocompatible platelet storage bags that dramatically extends platelet shelf-life beyond the current US Food and Drug Administration (FDA) standards of 5 days.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2020
Poly(hydroxymethylated-3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT-MeOH:PSS) conducting polymers are synthesized and incorporated in inverted structured perovskite solar cells (PVSCs) as hole transport materials. The highest occupied molecular orbital of PEDOT-MeOH is lowered by adding a hydroxymethyl (-MeOH) functional group to ethylenedioxythiophene (EDOT), and thus, the work function of PEDOT-MeOH:PSS is increased. Additionally, hydrogen bonding can be formed among EDOT-MeOH monomers and between EDOT-MeOH monomers and sulfate groups on PSS, which promotes PEDOT-MeOH chain growth and enhances PSS doping.
View Article and Find Full Text PDFThe ability to expand hematopoietic stem and progenitor cells (HSPCs) ex vivo is critical to fully realize the potential of HSPC-based therapies. In particular, the application of clinically effective therapies, such as cord blood transplantation, has been impeded because of limited HSPC availability. Here, using 3D culture of human HSPCs in a degradable zwitterionic hydrogel, we achieved substantial expansion of phenotypically primitive CD34 cord blood and bone-marrow-derived HSPCs.
View Article and Find Full Text PDFMaterials that resist nonspecific protein adsorption are needed for many applications. However, few are able to achieve ultralow fouling in complex biological milieu. Zwitterionic polymers emerge as a class of highly effective ultralow fouling materials due to their superhydrophilicity, outperforming other hydrophilic materials such as poly(ethylene glycol).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2019
Although PEGylation reduces the immunogenicity of protein drugs to some extent, its limitations for highly immunogenic biotherapeutics have been demonstrated. Herein, a proactive strategy to alleviate the development of anti-drug antibodies (ADAs) against protein drugs by immunomodulatory bioconjugation is reported. Rapamycin was conjugated to a PEGylated protein therapeutic via a cleavable disulfide linker.
View Article and Find Full Text PDFNerve agents are a class of organophosphorus compounds (OPs) that blocks communication between nerves and organs. Because of their acute neurotoxicity, it is extremely difficult to rescue the victims after exposure. Numerous efforts have been devoted to search for an effective prophylactic nerve agent bioscavenger to prevent the deleterious effects of these compounds.
View Article and Find Full Text PDFThe undesirable immune response poses a life-threatening challenge to human health. It not only deteriorates the therapeutic performance of biologic drugs but also contributes to various diseases such as allergies and autoimmune diseases. Inspired by the role of chromatin in the maintenance of natural immune tolerance, here we report a DNA-protein polymeric nanocomplex that can mimic the tolerogenic function of chromatin and induce an immune tolerance to its protein cargos.
View Article and Find Full Text PDFHere, we report a simple yet effective surface-modification approach to imparting hydrophobic surfaces with superhydrophilicity using ultralow fouling/functionalizable carboxybetaine (CB) copolymers via a dip-coating technique. A new series of CB random copolymers with varying amphiphilicities were synthesized and coated on hydrophobic polypropylene (PP) and polystyrene (PS) surfaces. The nonfouling capability of each coating was screened by an enzyme-linked immunosorbent assay (ELISA) and further comprehensively assessed against 100% human serum by a Micro BCA protein assay kit.
View Article and Find Full Text PDFPoly(ethylene glycol) (PEG) conjugation has been the gold standard to ameliorate the pharmacokinetic (PK) and immunological profiles of proteins. PEG polymer does become immunogenic once attached to proteins, evoking PEG-specific antibody (Ab) responses. The anti-PEG Abs could cause PEGylated biologic treatments to fail and even result in lethal adverse reactions.
View Article and Find Full Text PDFWe report the synthesis of a zwitterionic carboxybetaine disulfide cross-linker (CBX-SS) and biodegradable poly(carboxybetaine) (PCB) hydrogels and nanocages (NCs) made using this cross-linker. The structure of CBX-SS combines zwitterionic carboxybetaine to confer nonfouling properties and a disulfide linkage to facilitate degradation. The physical, mechanical, and fouling characteristics of PCB hydrogels cross-linked with CBX-SS were investigated.
View Article and Find Full Text PDFInjectable and malleable hydrogels that combine excellent biocompatibility, physiological stability, and ease of use are highly desirable for biomedical applications. Here, a simple and scalable strategy is reported to make injectable and malleable zwitterionic polycarboxybetaine hydrogels, which are superhydrophilic, nonimmunogenic, and completely devoid of nonspecific interactions. When zwitterionic microgels are reconstructed, the combination of covalent crosslinking inside each microgel and supramolecular interactions between them gives the resulting zwitterionic injectable pellet (ZIP) constructs supportive moduli and tunable viscoelasticity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2018
The commonly used "stealth material" poly(ethylene glycol) (PEG) effectively promotes the pharmacokinetics of therapeutic cargos while reducing their immune response. However, recent studies have suggested that PEG could induce adverse reactions, including the emergence of anti-PEG antibodies and tissue histologic changes. An alternative stealth material with no or less immunogenicity and organ toxicity is thus urgently needed.
View Article and Find Full Text PDFFor biotherapeutics that require multiple administrations to fully cure diseases, the induction of undesirable immune response is one common cause for the failure of their treatment. Covalent binding of hydrophilic polymers to proteins is commonly employed to mitigate potential immune responses. However, while this technique is proved to partially reduce the antibodies (Abs) reactive to proteins, it may induce Abs toward their associated polymers and thus result in the loss of efficacy.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2018
While hydrophobic nanoparticles (NPs) have been long recognized to boost the immune activation, whether hydrophilic NPs modulate an immune system challenged by immune stimulators and how their hydrophilic properties may affect the immune response is still unclear. To answer this question, three polymers, poly(ethylene glycol) (PEG), poly(sulfobetaine) (PSB) and poly(carboxybetaine) (PCB), which are commonly considered hydrophilic, are studied in this work. For comparison, nanogels with uniform size and homogeneous surface functionalities were made from these polymers.
View Article and Find Full Text PDFCellulose paper is an ideal diagnostic platform for low-cost, easily disposable and lightweight implementation, but requires surface modification to achieve detection with high sensitivity and specificity in complex media. In this work, a polymer-catechol conjugate containing a superhydrophilic nonfouling poly(carboxylbetaine) (pCB) and four surface-binding l-3,4-dihydroxyphenylalanine (DOPA) groups, pCB-(DOPA), were applied onto a paper-based sensor surface via a simple "graft-to" immersion process to render the surface with both nonfouling and protein functionalizable properties. This dip-coating technique is effective, convenient and robust as compared to the "graft-from" techniques reported previously with similar nonfouling properties.
View Article and Find Full Text PDFThe development of nonfouling zwitterionic materials has a wide range of biomedical and engineering applications. This work delineates the design and synthesis of a new zwitterionic material based on a naturally occurring compatible solute, ectoine, which is known to possess additional protective properties that stabilize even whole cells against ultraviolet radiation or cytotoxins. These properties and applications of ectoine inspire us to design a functional monomer containing the natural zwitterion moiety of ectoine imparting nonfouling properties and the methacrylate moiety for polymerization.
View Article and Find Full Text PDFPre-existing and induced anti-poly(ethylene glycol) (PEG) antibodies (abs) have been shown to be related with limitation of therapeutic efficacy and reduction in tolerance of several therapeutic agents. However, the current methods to detect anti-PEG abs are tedious and usually lack quantification. A facile, rapid, sensitive, and reliable technique to detect anti-PEG abs is highly desired in both research and clinic settings.
View Article and Find Full Text PDFMedical devices face nonspecific biofouling from proteins, cells, and microorganisms, which significantly contributes to complications and device failure. Imparting these devices with nonfouling capabilities remains a major challenge, particularly for those made from elastomeric polymers. Current strategies, including surface coating and copolymerization/physical blending, necessitate compromise among nonfouling properties, durability, and mechanical strength.
View Article and Find Full Text PDFTerminal sterilization of hydrogel-based biomaterials is crucial for their clinically relevant applications. The authors synthesized nonfouling zwitterionic hydrogels consisting of carboxybetaine (CB) acrylamide monomer and a carboxybetaine dimethacrylate crosslinker. The mechanical and biological stability of nonfouling hydrogels were investigated using three main terminal sterilization techniques, i.
View Article and Find Full Text PDFSurface-enhanced Raman spectroscopy (SERS) has been recognized as one of the most sensitive sensing technologies and has been used for a variety of chemical, biological and medical applications. Compared to traditional direct SERS detection using a bare metal SERS-active substrate, surface chemistries and surface modifications on SERS-active substrates are becoming more and more important to achieve the detection of target analytes with a small surface affinity or weak Raman activity. As one special class of surface chemistries and modifications for SERS-active substrates, the thiophenol-based molecules offer new functions, increased sensitivity, and improved specificity to SERS-based sensing.
View Article and Find Full Text PDF