Publications by authors named "Priyanka Upadhyai"

Leucine - rich repeat containing 45 protein (LRRC45) protein localizes at the proximal end of centrioles and forms a component of the proteinaceous linker between them, with an important role in centrosome cohesion. In addition, a pool of it localizes at the distal appendages of the modified parent centriole that forms the primary cilium and it has essential functions in the establishment of the transition zone and axonemal extension during early ciliogenesis. Here, we describe three individuals from two unrelated families with severe central nervous system anomalies.

View Article and Find Full Text PDF

Background: Spondyloepimetaphyseal dysplasia with joint laxity type 3 (SEMDJL3) is a rare skeletal dysplasia associated with EXOC6B, a component of the exocyst complex, involved in vesicle tethering and exocytosis at the plasma membrane. So far, EXOC6B and the pathomechanisms underlying SEMDJL3 remain obscure.

Methods And Results: Exoc6b was detected largely at the perinuclear regions and the primary cilia base in ATDC5 prechondrocytes.

View Article and Find Full Text PDF

Background: Long COVID is a clinical entity characterized by persistent health problems or development of new diseases, without an alternative diagnosis, following SARS-CoV-2 infection that affects a significant proportion of individuals globally. It can manifest with a wide range of symptoms due to dysfunction of multiple organ systems including but not limited to cardiovascular, hematologic, neurological, gastrointestinal, and renal organs, revealed by observational studies. However, a causal association between the genetic predisposition to COVID-19 and many post-infective abnormalities in long COVID remain unclear.

View Article and Find Full Text PDF

Primary cilia are non-motile, microtubule-based sensory organelle present in most vertebrate cells with a fundamental role in the modulation of organismal development, morphogenesis, and repair. Here we focus on the role of primary cilia in embryonic and postnatal skeletal development. We examine evidence supporting its involvement in physiochemical and developmental signaling that regulates proliferation, patterning, differentiation and homeostasis of osteoblasts, chondrocytes, and their progenitor cells in the skeleton.

View Article and Find Full Text PDF

Spondylo-epi-metaphyseal dysplasias with joint laxity, type 3 (SEMDJL3) is a genetic skeletal disorder characterized by multiple joint dislocations, caused by biallelic pathogenic variants in the EXOC6B gene. Only four individuals from two families have been reported to have this condition to date. The molecular pathogenesis related to primary ciliogenesis has not been enumerated in subjects with SEMDJL3.

View Article and Find Full Text PDF

Host genetic variability plays a pivotal role in modulating COVID-19 clinical outcomes. Despite the functional relevance of protein-coding regions, rare variants located here are less likely to completely explain the considerable numbers of acutely affected COVID-19 patients worldwide. Using an exome-wide association approach, with individuals of European descent, we sought to identify common coding variants linked with variation in COVID-19 severity.

View Article and Find Full Text PDF

Primary cilia are non-motile sensory cell-organelle that are essential for organismal development, differentiation, and postnatal homeostasis. Their biogenesis and function are mediated by the intraflagellar transport (IFT) system. Pathogenic variants in IFT52, a central component of the IFT-B complex is associated with short-rib thoracic dysplasia with or without polydactyly 16 (SRTD16), with major skeletal manifestations, in addition to other features.

View Article and Find Full Text PDF

The coronavirus disease (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by a wide spectrum of clinical phenotypes ranging from asymptomatic to symptomatic with mild or moderate presentation and severe disease. COVID-19 susceptibility, severity and recovery have demonstrated high variability worldwide. Variances in the host genetic architecture may underlie the inter-individual and population-scale differences in COVID-19 presentation.

View Article and Find Full Text PDF

Biallelic loss of function variants in TRIP11 encoding for the Golgi microtubule-associated protein 210 (GMAP-210) causes the lethal chondrodysplasia achondrogenesis type 1A (ACG1A). Loss of TRIP11 activity has been shown to impair Golgi structure, vesicular transport, and results in loss of IFT20 anchorage to the Golgi that is vital for ciliary trafficking and ciliogenesis. Here, we report four fetuses, two each from two families, who were ascertained antenatally with ACG1A.

View Article and Find Full Text PDF

RNA exosome is a highly conserved ribonuclease complex essential for RNA processing and degradation. Bi-allelic variants in exosome subunits EXOSC3, EXOSC8 and EXOSC9 have been reported to cause pontocerebellar hypoplasia type 1B, type 1C and type 1D, respectively, while those in EXOSC2 cause short stature, hearing loss, retinitis pigmentosa and distinctive facies. We ascertained an 8-months-old male with developmental delay, microcephaly, subtle dysmorphism and hypotonia.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the genetic origins and population history of the Kumhars, a northern Indian community, using SNP genotype data and comparing them to ancient and modern populations.
  • Results indicate that Kumhars have high Ancestral South Indian (ASI) ancestry, minimal Steppe ancestry, and a surprising genetic closeness to the Kurchas, a small population in southern India.
  • The authors hypothesize that despite geographical separation and distinct histories, the Kumhars and Kurchas share a common origin linked to the decline of the Indus Valley Civilization, suggesting that social practices like endogamy helped preserve their genetic similarities.
View Article and Find Full Text PDF

Waardenburg syndrome subtypes 1 and 3 are caused by pathogenic variants in PAX3. We investigated 12 individuals from four unrelated families clinically diagnosed with Waardenburg syndrome type 1/3. Novel pathogenic variants identified in PAX3 included single nucleotide variants (c.

View Article and Find Full Text PDF

Primary cilia are non-motile sensory antennae present on most vertebrate cell surfaces. They serve to transduce and integrate diverse external stimuli into functional cellular responses vital for development, differentiation and homeostasis. Ciliary characteristics, such as length, structure and frequency are often tailored to distinct differentiated cell states.

View Article and Find Full Text PDF

Morphogen gradients specify cell fates during development, with a classic example being the bone morphogenetic protein (BMP) gradient's conserved role in embryonic dorsal-ventral axis patterning. Here, we elucidate how the BMP gradient is interpreted in the Drosophila embryo by combining live imaging with computational modeling to infer transcriptional burst parameters at single-cell resolution. By comparing burst kinetics in cells receiving different levels of BMP signaling, we show that BMP signaling controls burst frequency by regulating the promoter activation rate.

View Article and Find Full Text PDF
Article Synopsis
  • The 1q21.1 microdeletion syndrome presents with a variety of symptoms, including unique facial features, small head size (microcephaly), developmental challenges, and various congenital defects like heart and eye issues.
  • In a study of two siblings who carry a deletion in the 1q21.1 region, significant differences in their clinical features were observed, even though they inherited the deletion from their unaffected father.
  • The research also reviews data from 66 other individuals with the same condition, helping to enhance the understanding of the clinical impact of this genetic variation.
View Article and Find Full Text PDF

Nephronophthisis is an autosomal recessive disease characterized by cystic kidney disease with progression to end-stage kidney disease in children and adolescents with or without extra-renal involvement. It is caused by biallelic pathogenic variants in 19 genes including INVS that encodes a ciliary protein essential for renal development and left-right axis establishment. We report a child with bilateral enlarged, echogenic, polycystic kidneys with end-stage renal disease, anemia and metabolic acidosis caused by biallelic novel pathogenic variants, c.

View Article and Find Full Text PDF

The Hazaras are a distinct ethnic group from central Afghanistan and northwestern Pakistan of Mongoloid descent. Here, we sought to dissect the genetic admixture history of the Pakistani Hazaras and investigated their likely affiliation to ancient and extant West Eurasian populations. Our results indicated that the likely proportion of West Eurasian ancestry was low in the Hazaras and could be attributed putatively to a combination of Steppe populations from Early/Middle Bronze Age or Middle/Late Bronze Age and the Neolithic Iranians.

View Article and Find Full Text PDF

Background: The utilization of high resolution genome data has important implications for the phylogeographical evaluation of non-human species. Biogeographical analyses can yield detailed understanding of their population biology and facilitate the geo-localization of individuals to promote their efficacious management, particularly when bred in captivity. The Geographic Population Structure (GPS) algorithm is an admixture based tool for inference of biogeographical affinities and has been employed for the geo-localization of various human populations worldwide.

View Article and Find Full Text PDF

Genetic heterogeneity, high burden and the paucity of genetic testing for rare diseases challenge genomic healthcare for these disorders in India. Here we report our experience over the past decade, of establishing the genomic evaluation of skeletal dysplasia at a tertiary university hospital in India. Research or clinical genomic testing was carried out by Sanger sequencing and next-generation sequencing.

View Article and Find Full Text PDF

The inference of genomic ancestry using ancestry informative markers (AIMs) can be useful for a range of studies in evolutionary genetics, biomedical research, and forensic analyses. However, the determination of AIMs for highly admixed populations with complex ancestries has remained a formidable challenge. Given the immense genetic heterogeneity and unique population structure of the Indian subcontinent, here we sought to derive AIMs that would yield a cohesive and faithful understanding of South Asian genetic origins.

View Article and Find Full Text PDF

Background: The utilization of biological data to infer the geographic origins of human populations has been a long standing quest for biologists and anthropologists. Several biogeographical analysis tools have been developed to infer the geographical origins of human populations utilizing genetic data. However due to the inherent complexity of genetic information these approaches are prone to misinterpretations.

View Article and Find Full Text PDF

The Siddis are a unique Indian tribe of African, South Asian, and European ancestry. While previous investigations have traced their ancestral origins to the Bantu populations from subSaharan Africa, the geographic localization of their ancestry has remained elusive. Here, we performed biogeographical analysis to delineate the ancestral origin of the Siddis employing an admixture based algorithm, Geographical Population Structure (GPS).

View Article and Find Full Text PDF

The iron-sulfur (Fe-S) cluster (ISC) biogenesis pathway is indispensable for many fundamental biological processes and pathogenic variations in genes encoding several components of the Fe-S biogenesis machinery, such as NFU1, BOLA3, IBA57 and ISCA2 are already implicated in causing four types of multiple mitochondrial dysfunctions syndromes (MMDS). We report on two unrelated families, with two affected children each with early onset neurological deterioration, seizures, extensive white matter abnormalities, cortical migrational abnormalities, lactic acidosis and early demise. Exome sequencing of two affected individuals, one from each family, revealed a homozygous c.

View Article and Find Full Text PDF

Inherited ataxias are an extremely heterogeneous group of disorders. Autosomal recessive spinocerebellar ataxia 20 (SCAR20) is a recently described disorder characterized by intellectual disability, ataxia, coarse facial features, progressive loss of Purkinje cells in the cerebellum and often hearing loss and skeletal abnormalities. Mutations in the gene SNX14, which plays an important role in autophagy, have been found to cause SCAR20.

View Article and Find Full Text PDF