Photosynthesis is a series of redox reactions, in which several electron transport processes operate to provide the energetic balance of light harvesting. In addition to linear electron flow, which ensures the basic functions of photosynthetic productivity and carbon fixation, alternative electron transport pathways operate, such as the cyclic electron flow (CEF), which play a role in the fine tuning of photosynthesis and balancing the ATP/NADPH ratio under stress conditions. In this work, we characterized the electron transport processes in microalgae species that have high relevance in applied research and industry (e.
View Article and Find Full Text PDFFlash-induced chlorophyll fluorescence relaxation is a powerful tool to monitor the reoxidation reactions of the reduced primary quinone acceptor, Q by Q and the plastoquinone (PQ) pool, as well as the charge recombination reactions between the donor and acceptor side components of Photosystem II (PSII). Under certain conditions, when the PQ pool is highly reduced (e.g.
View Article and Find Full Text PDFMicroalgae and cyanobacteria are considered as important model organisms to investigate the biology of photosynthesis; moreover, they are valuable sources of biomolecules for several biotechnological applications. Understanding the species-specific traits of photosynthetic electron transport is extremely important, because it contributes to the regulation of ATP/NADPH ratio, which has direct/indirect links to carbon fixation and other metabolic pathways and thus overall growth and biomass production. In the present work, a cuvette-based setup is developed, in which a combination of measurements of dissolved oxygen, pH, chlorophyll fluorescence and NADPH kinetics can be performed without disturbing the physiological status of the sample.
View Article and Find Full Text PDF