Publications by authors named "Priyanka Bose"

To achieve better-repurposed motifs, saccharin has been merged with biocompatible sugar molecules via a 1,2,3-triazole linker, and ten novel 1,2,3-triazole-appended saccharin glycoconjugates were developed in good yield by utilizing modular CuAAC click as regioselective triazole forming tool. The docking study indicated that the resulting hybrid molecules have an overall substantial interaction with the CAXII macromolecule. Moreover, the galactose triazolyl saccharin analogue 3h has a binding energy of -8.

View Article and Find Full Text PDF

Leishmania encode six paralogs of the cap-binding protein eIF4E and five eIF4G candidates, forming unique complexes. Two cap-binding proteins, LeishIF4E1 and LeishIF4E2, do not bind any identified LeishIF4Gs, thus their roles are intriguing. Here, we combine structural prediction, proteomic analysis, and interaction assays to shed light on LeishIF4E2 function.

View Article and Find Full Text PDF

To develop a better chemotherapeutically potential candidate for lung cancer treatment and cure with repurposed motifs, quinine has been linked with biocompatible CuAAC-inspired regioselective 1,2,3-triazole linker and a series of ten novel 1,2,3-triazolyl-9-quinine conjugates have been developed by utilizing click conjugation of glycosyl ether alkynes with 9-epi-9-azido-9-deoxy-quinine under standard click conditions. In parallel, the docking study indicated that the resulting conjugates have an overall appreciable interaction with ALK-5 macromolecules. Moreover, the mannose-triazolyl conjugate exhibited the highest binding interactions of -7.

View Article and Find Full Text PDF

Translation of most cellular mRNAs in eukaryotes proceeds through a cap-dependent pathway, whereby the cap-binding complex, eIF4F, anchors the pre-initiation complex at the 5' end of mRNAs driving translation initiation. The genome of encodes a large repertoire of cap-binding complexes that fulfill a variety of functions possibly involved in survival along the life cycle. However, most of these complexes function in the promastigote life form that resides in the sand fly vector and decrease their activity in amastigotes, the mammalian life form.

View Article and Find Full Text PDF

To imbibe the aim of synthesizing water-soluble and biocompatible motif, a click-inspired piperazine glycoconjugate has been devised up. In this report, we present a focused approach to design and synthesis of versatile sugar-appended triazoles through 'Click Chemistry' along with their pharmacological studies on cyclin-dependent kinases (CDKs) and cell cytotoxicity on cancer cells using in silico and in vitro approaches, respectively. The study has inclusively recognized the galactose- and mannose-derived piperazine conjugates as the promising motifs.

View Article and Find Full Text PDF

In nature, almost all cells are covered with a complex array of glycan chain namely sialic acids or nuraminic acids, a negatively charged nine carbon sugars which is considered for their great therapeutic importance since long back. Owing to its presence at the terminal end of lipid bilayer (commonly known as terminal sugars), the well-defined sialosides or sialoconjugates have served pivotal role on the cell surfaces and thus, the sialic acid-containing glycans can modulate and mediate a number of imperative cellular interactions. Understanding of the sialo-protein interaction and their roles in vertebrates in regard of normal physiology, pathological variance, and evolution has indeed a noteworthy journey in medicine.

View Article and Find Full Text PDF

Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols).

View Article and Find Full Text PDF

Background: The biotherapeutic asparaginase is a cornerstone of therapy in acute lymphoblastic leukaemia (ALL). With limited access to the original native Escherichia coli-derived asparaginase (EcASNase), a variety of EcASNase biogenerics are used in low-middle-income countries (LMICs). The variable quality of these biogenerics potentially influences clinical outcomes.

View Article and Find Full Text PDF

Among all the malaria parasites, P. falciparum is the most predominant species which has developed drug resistance against most of the commercial anti-malarial drugs. Thus, finding a new molecule for the inhibition of enzymes of P.

View Article and Find Full Text PDF

The recent emergence of hypervirulent clinical variants of (hvKP) causing community-acquired, invasive, metastatic, life-threatening infections of lungs, pleura, prostate, bones, joints, kidneys, spleen, muscles, soft-tissues, skin, eyes, central nervous system (CNS) including extrahepatic abscesses, and primary bacteremia even in healthy individuals has posed stern challenges before the existing treatment modalities. There is therefore an urgent need to look for specific and effective therapeutic alternatives against the said bacterial infection or recurrence. A new type of MoS-modified curcumin nanostructure has been developed and evaluated as a potential alternative for the treatment of multidrug-resistant isolates.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) oncoprotein EBNA3C is indispensable for primary B-cell transformation and maintenance of lymphoblastoid cells outgrowth. EBNA3C usurps two putative cellular pathways-cell-cycle and apoptosis, essentially through modulating ubiquitin-mediated protein-degradation or gene transcription. In cancer cells, these two pathways are interconnected with autophagy,-a survival-promoting catabolic network in which cytoplasmic material including mis/un-folded protein aggregates and damaged organelles along with intracellular pathogens are degraded and recycled in lysosomal compartments.

View Article and Find Full Text PDF

Background: Most patients with transient ischaemic attack (TIA) present to their GP. Early identification and treatment reduces the risk of subsequent stroke and consequent disability and mortality.

Objective: To explore GPs' views on the diagnosis and immediate management of suspected TIA, and the potential utility of a diagnostic tool.

View Article and Find Full Text PDF

INTRODUCTION Many patients who suffer a transient ischaemic attack (TIA) present to their general practitioner (GP). Early identification and treatment reduces the risk of subsequent stroke, disability and mortality. AIM To review the accuracy of TIA diagnosis in primary care, immediate management and interventions to assist GPs with the condition.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) is highly ubiquitous in human population and establishes a lifelong asymptomatic infection within the infected host unless the immune system is compromised. Following initial infection in the oropharyngeal epithelial cells, EBV primarily infects naive B-lymphocytes and develops a number of B-cell lymphomas particularly in immune-deficient individuals. In vitro, EBV can also infect and subsequently transform quiescent B-lymphocytes into continuously proliferating lymphoblastoid cell lines (LCLs) resembling EBV-induced lymphoproliferative disorders in which a subset of latent transcripts are detected.

View Article and Find Full Text PDF