New antibacterial agents with novel target and mechanism of action are urgently needed to combat problematic bacterial infections and mounting antibiotic resistances. Topoisomerase IA represents an attractive and underexplored antibacterial target, as such, there is a growing interest in developing selective and potent topoisomerase I inhibitors for antibacterial therapy. Based on our initial biological screening, fluoroquinophenoxazine 1 was discovered as a low micromolar inhibitor against E.
View Article and Find Full Text PDFType IA topoisomerase activities are essential for resolving DNA topological barriers via an enzyme-mediated transient single strand DNA break. Accumulation of topoisomerase DNA cleavage product can lead to cell death or genomic rearrangement. Many antibacterial and anticancer drugs act as topoisomerase poison inhibitors that form stabilized ternary complexes with the topoisomerase covalent intermediate, so it is desirable to identify such inhibitors for type IA topoisomerases.
View Article and Find Full Text PDFNaturally occurring anziaic acid was very recently reported as a topoisomerase I inhibitor with antibacterial activity. Herein total synthesis of anziaic acid and structural analogues is described and the preliminary structure-activity relationship (SAR) has been developed based on topoisomerase inhibition and whole cell antibacterial activity.
View Article and Find Full Text PDF