Human uracil DNA glycosylase (hUNG), a crucial player in the initiation of the base excision repair pathway, is susceptible to alterations in function and conformation induced by the accumulation of toxic metals. Despite the recognized impact of toxic metals on DNA repair enzymes, there exists a notable deficiency in theoretical investigations addressing this phenomenon. This study investigates the impact of toxic heavy metal ions, Pb(II) and Ni(II), on the stability of hUNG through molecular dynamics (MD) simulations.
View Article and Find Full Text PDFUracil DNA glycosylase is a key enzyme that identifies and removes damaged bases from DNA in the base excision repair pathway. Experimentalists have identified the possibility of Cd(II) reducing the activity of human uracil DNA glycosylase (hUNG) by binding with the enzyme replacing the catalytic water molecule. The present study focus on the stability variation of the enzyme in the presence and absence of Cd(II) and confirms the reported results with the stability analysis done using molecular dynamic (MD) simulation trajectories.
View Article and Find Full Text PDF