Background Bioactive glass, which can form strong bonds with tissues, particularly bones, has become pivotal in tissue engineering. Incorporating biologically active ions like selenium enhances its properties for various biomedical applications, including bone repair and cancer treatment. Selenium's antioxidative properties and role in bone health make it a promising addition to biomaterial.
View Article and Find Full Text PDFBackground: Nanotechnology enables precise manipulation of matter at the molecular level, with nanoparticles offering diverse applications in medicine and beyond. Green synthesis methods, utilizing natural sources like plant extracts, are favored for their eco-friendliness. Zinc oxide (ZnO) nanoparticles are recognized for their ability to combat microbes and reduce inflammation, which holds promise for biomedical applications.
View Article and Find Full Text PDFBackground: The primary goal of periodontal therapy is to facilitate the regeneration of tissues damaged by periodontal disease. In recent years, there has been a growing utilization of guided tissue regeneration (GTR) membranes with bioabsorbable properties as these membranes are increasingly employed to guide the growth of gingival tissue away from the root surface. Both resorbable and non-resorbable membranes currently employed act as physical barriers, preventing the ingrowth of connective and epithelial tissues into the defect and thereby facilitating periodontal tissue regeneration.
View Article and Find Full Text PDFPurpose: The study aimed to analyze whether adding (CQ) extract and the extracellular matrix of ovine tendon (TENDON) increases the regenerative potential of mesenchymal stem cells produced in hyaluronic acid (HA) scaffolds for tenogenesis.
Materials And Methods: Fifty grams of powdered CQ was mixed with 250 mL of ethanol to prepare the extract. Two grams of hyaluronic acid powder was added to 100 mL of distilled water to make the HA solution.