Cancer cells depend on specific oncogenic pathways or present a genetic alteration that leads to a particular disturbance. Still, personalized and targeted biological therapy remains challenging, with current efforts generally yielding disappointing results. Carefully assessing onco-target molecular pathways can, however, potently assist with such efforts for the selection of patient populations that would best respond to a given drug treatment.
View Article and Find Full Text PDFStudying primordial events in cancer is pivotal for identifying predictive molecular indicators and for targeted intervention. While the involvement of G-protein-coupled receptors (GPCRs) in cancer is growing, GPCR-based therapies are yet rare. Here, we demonstrate the overexpression of protease-activated receptor 2 (PAR2), a GPCR member in the fallopian tubes (FTs) of high-risk BRCA carriers as compared to null in healthy tissues of FT.
View Article and Find Full Text PDFWhile the role of G-protein-coupled receptors (GPCR) in cancer is acknowledged, their underlying signaling pathways are understudied. Protease-activated receptors (PAR), a subgroup of GPCRs, form a family of four members (PAR1-4) centrally involved in epithelial malignancies. PAR4 emerges as a potent oncogene, capable of inducing tumor generation.
View Article and Find Full Text PDFThe essential role of G-protein coupled receptors (GPCRs) in tumor growth is recognized, yet a GPCR based drug in cancer is rare. Understanding the molecular path of a tumor driver gene may lead to the design and development of an effective drug. For example, in members of protease-activated receptor (PAR) family (e.
View Article and Find Full Text PDFThe present study deals with the genetic changes observed in the protein sequence of an α-amylase from Streptomyces spp. and its structural homologs from Pseudoalteromonas haloplanktis, invertebrates and mammals. The structural homologs are renowned for their important features such as chloride binding triad and a serine-protease like catalytic triad (a triad which is reported to be strictly conserved in all chloride-dependent α-amylases).
View Article and Find Full Text PDF