The depletion of evolutionarily conserved pelota protein causes impaired differentiation of embryonic and spermatogonial stem cells. In this study, we show that temporal deletion of pelota protein before epidermal barrier acquisition leads to neonatal lethality due to perturbations in permeability barrier formation. Further analysis indicated that this phenotype is a result of failed processing of profilaggrin into filaggrin monomers, which promotes the formation of a protective epidermal layer.
View Article and Find Full Text PDFPelota (Pelo) is an evolutionarily conserved gene, and its deficiency in Drosophila affects both male and female fertility. In mice, genetic ablation of Pelo leads to embryonic lethality at the early implantation stage as a result of the impaired development of extra-embryonic endoderm (ExEn). To define the consequences of Pelo deletion on male germ cells, we temporally induced deletion of the gene at both embryonic and postnatal stages.
View Article and Find Full Text PDFPelota (Pelo) is ubiquitously expressed, and its genetic deletion in mice leads to embryonic lethality at an early post-implantation stage. In the present study, we conditionally deleted Pelo and showed that PELO deficiency did not markedly affect the self-renewal of embryonic stem cells (ESCs) or their capacity to differentiate in teratoma assays. However, their differentiation into extraembryonic endoderm (ExEn) in embryoid bodies (EBs) was severely compromised.
View Article and Find Full Text PDF