Post-translational modifications (PTMs) of proteins play important roles in the acclimation of plants to environmental stress. Lysine acetylation is a dynamic and reversible PTM, which can be removed by histone deacetylases. Here we investigated the role of lysine acetylation in the response of Arabidopsis leaves to 1 week of salt stress.
View Article and Find Full Text PDFOsmotic stress caused by drought and high salinity is a significant environmental threat that limits plant growth and agricultural yield. Redox regulation plays an important role in plant stress responses, but the mechanisms by which plants perceive and transduce redox signals are still underexplored. Here, we report a critical function for the thiol peroxidase GPX1 in osmotic stress response in rice, where it serves as a redox sensor and transducer.
View Article and Find Full Text PDFProtein functions often rely on protein-protein interactions. Hence, knowledge about the protein interaction network is essential for an understanding of protein functions and plant physiology. A major challenge of the postgenomic era is the mapping of protein-protein interaction networks.
View Article and Find Full Text PDFThe reversible acetylation of lysine residues is catalyzed by the antagonistic action of lysine acetyltransferases and deacetylases, which can be considered as master regulators of their substrate proteins. Lysine deacetylases, historically referred to as histone deacetylases, have profound functions in regulating stress defenses and development in plants. Lysine acetylation of the N-terminal histone tails promotes gene transcription and decondensation of chromatin, rendering the DNA more accessible to the transcription machinery.
View Article and Find Full Text PDFHelicoverpa armigera is one of the major crop pests and is less amenable to current pest control approaches. RNA interference (RNAi) is emerging as a potent arsenal for the insect pest control over current methods. Here, we examined the effect on growth and development in H.
View Article and Find Full Text PDFThe data presented in this article is related to the research article "RNAi of selected candidate genes interrupts growth and development of Helicoverpa armigera" (Chikate et al., 2016) [1]. RNA interference (RNAi) is emerging as a potent insect pest control strategy over current methods and their resistance by pest.
View Article and Find Full Text PDF