Metal and metalloid pollutants severely threatens environmental ecosystems and human health, necessitating effective remediation strategies. Nanoparticle (NPs)-based approaches have gained significant attention as promising solutions for efficient removing heavy metals from various environmental matrices. The present review is focused on green synthesized NPs-mediated remediation such as the implementation of iron, carbon-based nanomaterials, metal oxides, and bio-based NPs.
View Article and Find Full Text PDFA slight variation in ecological milieu of plants, like drought, heavy metal toxicity, abrupt changes in temperature, flood, and salt stress disturbs the usual homeostasis or metabolism in plants. Among these stresses, salinity stress is particularly detrimental to the plants, leading to toxic effects and reduce crop productivity. In a saline environment, the accumulation of sodium and chloride ions up to toxic levels significantly correlates with intracellular osmotic pressure, and can result in morphological, physiological, and molecular alterations in plants.
View Article and Find Full Text PDFThe unrestricted release of various toxic substances into the environment is a critical global issue, gaining increased attention in modern society. Many of these substances are pristine to various environmental compartments known as contaminants/emerging contaminants (ECs). Nanoparticles and emerging sorbents enhanced remediation is a compelling methodology exhibiting great potential in addressing EC-related issues and facilitating their elimination from the environment, particularly those compounds that demonstrate eco-toxicity and pose considerable challenges in terms of removal.
View Article and Find Full Text PDFA major environmental problem on a global scale is the contamination of water by dyes, particularly from industrial effluents. Consequently, wastewater treatment from various industrial wastes is crucial to restoring environmental quality. Dye is an important class of organic pollutants that are considered harmful to both people and aquatic habitats.
View Article and Find Full Text PDFSoil decontamination and restoration continue to be a key environmental concern around the globe. The degradation of soil resources due to the presence of potentially toxic elements (PTEs) has a substantial influence on agricultural production, food security, and human well-being, and as a result, urgent action is required. PTEs pollution is not a threat to the agroecosystems but also a serious concern to human health; thereby, it needs to be addressed timely and effectively.
View Article and Find Full Text PDFNanotechnology has gained popularity in recent years owing to its established potential for application and implementation in various sectors such as medical drugs, medicine, catalysis, energy, material, and plant science. Nanoparticles (NPs) are smaller in size (1-100 nm) with a larger surface area and have many fruitful applications. The extraordinary functions of NPs are utilized in sustainable agriculture due to nano-enabled products, e.
View Article and Find Full Text PDFAmelioration and remediation technology was developed for phosphogypsum utilization in Haplic Chernozem of South-European facies (Rostov Region). The technology comprises phosphogypsum dispersed application into the soil layer of 20-45 cm during intra-soil milling. In the model experiment, the phosphogypsum doses 0 (control), 10, 20, and 40 t ha were studied.
View Article and Find Full Text PDFDespite the documented significance of carbon-based nanomaterials (CNMs) in plant development, the knowledge of the impact of carbon nanoparticles (CNPs) dosage on physiological responses of crop plants is still scarce. Hence, the present study investigates the concentration-dependent impact of CNPs on the morphology and physiology of . Crop seedlings were subjected to CNPs at varying concentrations (25 to 200 µM) in hydroponic medium for 96 h to evaluate various physiological parameters.
View Article and Find Full Text PDF