Background: In rice, drought stress at reproductive stage drastically reduces yield, which in turn hampers farmer's efforts towards crop production. The majority of the rice varieties have resistance genes against several abiotic and biotic stresses. Therefore, the traditional landraces were studied to identify QTLs/candidate genes associated with drought tolerance.
View Article and Find Full Text PDFUnlabelled: The 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR; EC1.1.1.
View Article and Find Full Text PDFNorth Eastern part of India such as Assam is inundated by flood every year where the farmers are forced to grow the traditional tall deep-water rice. Genetic improvement of this type of rice is slow because of insufficient knowledge about their genetic architecture and population structure. In the present investigation, the genetic diversity architecture of 94 deep-water rice genotypes of Assam and association mapping strategy was, for the first time, applied to determine the significant SNPs and genes for deep-water rice.
View Article and Find Full Text PDFDifferential co-expression is a cutting-edge approach to analyze gene expression data and identify both shared and divergent expression patterns. The availability of high-throughput gene expression datasets and efficient computational approaches have unfolded the opportunity to a systems level understanding of functional genomics of different stresses with respect to plants. We performed the meta-analysis of the available microarray data for reoviridae and sequiviridae infection in rice with the aim to identify the shared gene co-expression profile.
View Article and Find Full Text PDFmiRNAs are class of endogenously initiated noncoding RNAs, which are most critical in gene expression and regulation at posttranscriptional level. They do so either by cleavage of the target mRNA or by translational repression. miRNAs are being given enough attention in recent years because of its role in myriad developmental processes including tumorogenesis and host-pathogen interaction.
View Article and Find Full Text PDFCitronella () is one of the richest sources of high-value isoprenoid aromatic compounds used as flavour, fragrance, and therapeutic elements. These isoprenoid compounds are synthesized by 2 independent pathways: mevalonate pathway and 2-C-methyl-d-erythritol-4-phosphate pathway. Evidence suggests that 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) is a rate-controlling enzyme for the synthesis of variety of isoprenoids.
View Article and Find Full Text PDFBlack gram (Vigna mungo) seeds are a rich source of digestible proteins, however, during storage these seeds are severely damaged by bruchids (Callosobruchus spp.), reducing seed quality and yield losses. Most of the cultivated genotypes of black gram are susceptible to bruchids, however, few tolerant genotypes have also been identified but the mechanism of tolerance is poorly understood.
View Article and Find Full Text PDFAdvances in transcriptome sequencing provide fast, cost-effective and reliable approach to generate large expression datasets especially suitable for non-model species to identify putative genes, key pathway and regulatory mechanism. Citronella (Cymbopogon winterianus) is an aromatic medicinal grass used for anti-tumoral, antibacterial, anti-fungal, antiviral, detoxifying and natural insect repellent properties. Despite of having number of utilities, the genes involved in terpenes biosynthetic pathway is not yet clearly elucidated.
View Article and Find Full Text PDF3-Hydroxy-3-methylglutaryl-CoA reductases (HMGR) plays an important role in catalyzing the first committed step of isoprenoid biosynthesis in the mevelonic (MVA) pathway (catalyzes the conversion of HMG-CoA to MVA) in plants. The present manuscript reports the full length cDNA cloning of HMGR (CaHMGR, GenBank accession number: KJ939450.2) and its characterization from Centella asiatica.
View Article and Find Full Text PDFThe 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR; EC1.1.1.
View Article and Find Full Text PDFThe avirulence gene avrxa5 of bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) recognized by the resistant rice lines having corresponding resistance (xa5) gene in a gene-for-gene manner. We used a combinatorial approach involving protein-protein docking, molecular dynamics (MD) simulations and binding free energy calculations to gain novel insights into the gene-for-gene mechanism that governs the direct interaction of R-Avr protein.
View Article and Find Full Text PDFAbstract Centella asiatica (Gotu Kola) is a plant that grows in tropical swampy regions of the world and has important medicinal and culinary use. It is often considered as part of Ayurvedic medicine, traditional African medicine, and traditional Chinese medicine. The unavailability of genomics resources is significantly impeding its genetic improvement.
View Article and Find Full Text PDFADP-glucose pyrophosphorylase (AGPase) is the first rate limiting enzyme of starch biosynthesis pathway and has been exploited as the target for greater starch yield in several plants. The structure-function analysis and substrate binding specificity of AGPase have provided enormous potential for understanding the role of specific amino acid or motifs responsible for allosteric regulation and catalytic mechanisms, which facilitate the engineering of AGPases. We report the three-dimensional structure, substrate, and inhibitor binding specificity of AGPase small subunit from different monocot and dicot crop plants.
View Article and Find Full Text PDFThe NADPH-dependent HC-toxin reductases (HCTR1 and 2) encoded by enzymatic class of disease resistance homologous genes (Hm1 and Hm2) protect maize by detoxifying a cyclic tetrapeptide, HC-toxin, secreted by the fungus Cochliobolus carbonum race 1(CCR1). Unlike the other classes' resistance (R) genes, HCTR-mediated disease resistance is an inimitable mechanism where the avirulence (Avr) component from CCR1 is not involved in toxin degradation. In this study, we attempted to decipher cofactor (NADPH) recognition and mode of HC-toxin binding to HCTRs through molecular docking, molecular dynamics (MD) simulations and binding free energy calculation methods.
View Article and Find Full Text PDFHerbal medicines and traditionally used medicinal plants present an untapped potential for novel molecular target discovery using systems science and OMICS biotechnology driven strategies. Since up to 40% of the world's poor people have no access to government health services, traditional and folk medicines are often the only therapeutics available to them. In this vein, North East (NE) India is recognized for its rich bioresources.
View Article and Find Full Text PDFThe endogenous small non-coding functional microRNAs (miRNAs) are short in size, range from ~21 to 24 nucleotides in length, play a pivotal role in gene expression in plants and animals by silencing genes either by destructing or blocking of translation of homologous mRNA. Although various high-throughput, time consuming and expensive techniques like forward genetics and direct cloning are employed to detect miRNAs in plants but comparative genomics complemented with novel bioinformatic tools pave the way for efficient and cost-effective identification of miRNAs through homologous sequence search with previously known miRNAs. In this study, an attempt was made to identify and characterize conserved miRNAs in garlic expressed sequence tags (ESTs) through computational means.
View Article and Find Full Text PDFThe theoretical three-dimensional structure of a novel δ-endotoxin Cry1Id (81 kDa) belonging to Cry1I class, toxic to many of the lepidopteran pests has been investigated through comparative modeling. Molecular dynamics (MD) simulations was carried out to characterize its structural and dynamical features at 10 ns in explicit solvent using the GROMACS version 4.5.
View Article and Find Full Text PDFThe endogenous small non-coding micro RNAs (miRNAs), which are typically ~21-24 nt nucleotides, play a crucial role in regulating the intrinsic normal growth of cells and development of the plants as well as in maintaining the integrity of genomes. These small non-coding RNAs function as the universal specificity factors in post-transcriptional gene silencing. Discovering miRNAs, identifying their targets, and further inferring miRNA functions is a routine process to understand normal biological processes of miRNAs and their roles in the development of plants.
View Article and Find Full Text PDFThe disease resistance gene Hm1 of maize encodes a NADPH-dependent reductase enzyme, HC-toxin reductase (HCTR) that detoxifies the HC toxin secreted by the race specific fungus Cochliobolus carbonum race 1. HCTR enzyme shares 29.6% sequence identity with dihydroflavonol reductase (DFR) of grape, a key enzyme involved in flavonoid biosynthesis.
View Article and Find Full Text PDFRice (Oryza sativa L.), a model plant belonging to the family Poaceae, is a staple food for a majority of the people worldwide. Grown in the tropical and subtropical regions of the world, this important cereal crop is under constant and serious threat from both biotic and abiotic stresses.
View Article and Find Full Text PDFTea is the most popular non-alcoholic and healthy beverage across the world. The understanding of the genetic organization and molecular biology of tea plant, which is very poorly understood at present, is required for quantum increase in productivity and efficient use of germplasm for either cultivation or breeding program. Single-pass sequencing of randomly selected cDNA clones is the most widely accepted technique for gene identification and cloning.
View Article and Find Full Text PDFSimple Sequence Repeats (SSRs) developed from Expressed Sequence Tags (ESTs), known as EST-SSRs are most widely used and potentially valuable source of gene based markers for their high levels of crosstaxon portability, rapid and less expensive development. The EST sequence information in the publicly available databases is increasing in a faster rate. The emerging computational approach provides a better alternative process of development of SSR markers from the ESTs than the conventional methods.
View Article and Find Full Text PDFUnlabelled: With the advent of high-throughput sequencing technology, sequences from many genomes are being deposited to public databases at a brisk rate. Open access to large amount of expressed sequence tag (EST) data in the public databases has provided a powerful platform for simple sequence repeat (SSR) development in species where sequence information is not available. SSRs are markers of choice for their high reproducibility, abundant polymorphism and high inter-specific transferability.
View Article and Find Full Text PDF