Sol-gel derived calcium silicate glasses may be useful for the regeneration of damaged bone. The mechanism of bioactivity is as yet only partially understood but has been strongly linked to calcium dissolution from the glass matrix. In addition to the usual laboratory-based characterisation methods, we have used neutron diffraction with isotopic substitution to gain new insights into the nature of the atomic-scale calcium environment in bioactive sol-gel glasses, and have also used high energy X-ray total diffraction to probe the nature of the processes initiated when bioactive glass is immersed in vitro in simulated body fluid.
View Article and Find Full Text PDFJ Mater Sci Mater Med
November 2006
Bioactive glass scaffolds have been produced, which meet many of the criteria for an ideal scaffold for bone tissue engineering applications, by foaming sol-gel derived bioactive glasses. The scaffolds have a hierarchical pore structure that is very similar to that of cancellous bone. The degradation products of bioactive glasses have been found to stimulate the genes in osteoblasts.
View Article and Find Full Text PDFIn addition to mediating cell signalling events, native extracellular matrix (ECM) assemblies interact with other ECM components, act as reservoirs for soluble signalling molecules and perform structural roles. The potential of native ECM assemblies in the manufacture of biomimetic materials has not been fully exploited due, in part, to the effects of substrate interactions on their morphology. We have previously demonstrated that the ECM components, fibrillin and type VI collagen microfibrils, exhibit substrate dependent morphologies on chemically and topographically variable heterogeneous surfaces.
View Article and Find Full Text PDFBioactive glasses dissolve upon immersion in culture medium, and release their constitutive ions into solution. There has been some evidence suggesting that these ionic-dissolution products influence osteoblast-specific processes. Here, the effect of 58S sol-gel-derived bioactive glass (60% SiO(2), 36% CaO, 4% P(2)O(5), in molar percentage) on primary osteoblasts derived from human fetal long bone explant cultures is investigated, and it is hypothesized that critical concentrations of sol-gel-dissolution products (consisting of a combination of simple inorganic ions) can enhance osteoblast phenotype in vitro by affecting the expression of a number of genes associated with the differentiation and extracellular matrix deposition processes.
View Article and Find Full Text PDFBioactive materials are routinely used in dental and orthopaedic applications. The concept was first introduced in 1971, with the discovery of 45S5 Bioglass, which is known to develop an interfacial bond between the implant and the host tissue. This glass is composed of SiO(2), CaO, P(2)O(5) and Na(2)O.
View Article and Find Full Text PDFExtended X-ray absorption fine structure spectroscopy and X-ray absorption near edge structure, X-ray fluorescence spectroscopy, and X-ray powder diffraction have been used to study the local calcium environment in four sol-gel-derived bioactive calcium silicate glasses of the general formula (CaO)(x)(SiO(2))(1-x). The formation of a hydroxyapatite layer on the composition with the highest bioactivity (x = 0.3) with time has been studied, in an in vitro environment, by immersion in simulated body fluid (SBF) at 37 degrees C.
View Article and Find Full Text PDFBioactive glasses react chemically with body fluids in a manner that is compatible with the repair processes of the tissues. This results in the formation of an interfacial bond between the glasses and living tissue. Bioactive glasses also stimulate bone-cell proliferation.
View Article and Find Full Text PDF