Publications by authors named "Priya Rajendra Rao"

Carotenoids are isoprenoid pigments synthesized exclusively by plants and microorganisms and play critical roles in light harvesting, photoprotection, attracting pollinators and phytohormone production. In recent years, carotenoids have been used for their health benefits due to their high antioxidant activity and are extensively utilized in food, pharmaceutical, and nutraceutical industries. Regulation of carotenoid biosynthesis occurs throughout the life cycle of plants, with vibrant changes in composition based on developmental needs and responses to external environmental stimuli.

View Article and Find Full Text PDF

Catechin, a yellow colored molecule obtained from the wood of Acacia catechu was analyzed for its interaction with synthetic DNA duplexes using spectroscopic analysis. UV-Visible spectroscopic analysis revealed the non-intercalative binding mode. Fourier Transform Infrared spectroscopy (FTIR) analysis expose chemical shift indicated by various vibrational stretches and an increase in the intensity of base stacking was observed by Circular Dichroism (CD), respectively.

View Article and Find Full Text PDF

In this present study, the inhibitory mechanism of three selected apocarotenoids (bixin, norbixin and crocin) on the diphenolase activity of tyrosinase has been investigated. The preliminary screening results indicated that apocarotenoids inhibited tyrosinase activity in a dose-dependent manner. Kinetic analysis revealed that apocarotenoids reversibly inhibited tyrosinase activity.

View Article and Find Full Text PDF

Natural toxins from plant sources with wide ranges of biological activities reflect the upswing of drug design in the pharmaceutical industry. Rubia cordifolia L. is one of the most important red dye yielding plants.

View Article and Find Full Text PDF

The interaction of food colorant norbixin with calf thymus DNA (CTDNA) was investigated through UV-Visible spectroscopy, Fourier Transform Infrared (FTIR), Circular Dichroism (CD), Nuclear Magnetic Resonance (NMR), DNA melting studies, electrophoretic analysis, histological staining technique and molecular docking studies. The results indicated that norbixin interacted with CTDNA by partial intercalation mode. The binding constant (K) of norbixin with CTDNA was calculated to be 5.

View Article and Find Full Text PDF