In many cases of familial amyotrophic lateral sclerosis (ALS), mutant forms of the Cu,Zn superoxide dismutase protein (SOD1) misfold and aggregate in motor neurons. Monomers of the normally homodimeric SOD1 have been found in patient tissue, presymptomatic mouse models of ALS, and in vitro misfolding assays which suggests that monomerization might be an early step in the pathological SOD1 misfolding pathway. In this study, we targeted the dimer interface with small molecules that might act as chemical chaperones to stabilize the native dimer and prevent downstream misfolding and aggregation.
View Article and Find Full Text PDFAmong the diseases of protein misfolding, amyotrophic lateral sclerosis (ALS) is unusual in that the proteinaceous neuronal inclusions that are the hallmark of the disease have neither the classic fibrillar appearance of amyloid by transmission electron microscopy nor the affinity for the dye Congo red that is a defining feature of amyloid. Mutations in the Cu, Zn superoxide dismutase (SOD1) cause the largest subset of inherited ALS cases. The mechanism by which this highly stable enzyme misfolds to form non-amyloid aggregates is currently poorly understood, as are the stresses that initiate misfolding.
View Article and Find Full Text PDFhYVH1 [human orthologue of YVH1 (yeast VH1-related phosphatase)] is an atypical dual-specificity phosphatase that is widely conserved throughout evolution. Deletion studies in yeast have suggested a role for this phosphatase in regulating cell growth. However, the role of the human orthologue is unknown.
View Article and Find Full Text PDF