Publications by authors named "Priya Prasannan"

Ethnopharmacological Relevance: Ethnogynaecology is an emerging branch of science dealing with the treatment of gynaecological ailments by tribals, local healers, and traditional practitioners. The ethnogynaecological importance of medicinal plants in India is a fertile area to conduct more scientific studies to evaluate their potentialities, to isolate bioactive compounds, and thereby to develop drugs for the common gynaecological health-related issues faced by women everywhere.

Objectives: The Indigenous medical knowledge systems of India have not been properly documented with special reference to ethnogynaecology.

View Article and Find Full Text PDF

Fungal methionine synthase catalyzes the transfer of a methyl group from 5-methyl-tetrahydrofolate to homocysteine to create methionine. The enzyme, called Met6p in fungi, is required for the growth of the pathogen Candida albicans, and is consequently a reasonable target for antifungal drug design. In order to understand the mechanism of this class of enzyme, we created a three-dimensional model of the C.

View Article and Find Full Text PDF

Mammalian mitochondrial C(1)-tetrahydrofolate (THF) synthase (MTHFDIL gene product) is a monofunctional 10-formyl-THF synthetase, lacking the 5,10-methylene-THF dehydrogenase and 5,10-methenyl-THF cyclohydrolase activities typically found in the trifunctional cytoplasmic proteins. Here, we report the submitochondrial localization of epitope-tagged human mitochondrial C(1)-THF synthase expressed in Chinese hamster ovary cells. Mitochondrial fractionation experiments show that human mitochondrial C(1)-THF synthase behaves as a peripheral membrane protein, tightly associated with the matrix side of the mitochondrial inner membrane.

View Article and Find Full Text PDF

C1-tetrahydrofolate (THF) synthase is a trifunctional enzyme found in eukaryotes that contains the activities 10-formyl-THF synthetase, 5,10-methenyl-THF cyclohydrolase, and 5,10-methylene-THF dehydrogenase. The cytoplasmic isozyme of C1-THF synthase is well characterized in a number of mammals, including humans; but a mitochondrial isozyme has been previously identified only in the yeast Saccharomyces. Here, we report the identification and characterization of the human gene encoding a functional mitochondrial C1-THF synthase.

View Article and Find Full Text PDF