Ethnopharmacological Relevance: Ethnogynaecology is an emerging branch of science dealing with the treatment of gynaecological ailments by tribals, local healers, and traditional practitioners. The ethnogynaecological importance of medicinal plants in India is a fertile area to conduct more scientific studies to evaluate their potentialities, to isolate bioactive compounds, and thereby to develop drugs for the common gynaecological health-related issues faced by women everywhere.
Objectives: The Indigenous medical knowledge systems of India have not been properly documented with special reference to ethnogynaecology.
Biochem Biophys Res Commun
May 2009
Fungal methionine synthase catalyzes the transfer of a methyl group from 5-methyl-tetrahydrofolate to homocysteine to create methionine. The enzyme, called Met6p in fungi, is required for the growth of the pathogen Candida albicans, and is consequently a reasonable target for antifungal drug design. In order to understand the mechanism of this class of enzyme, we created a three-dimensional model of the C.
View Article and Find Full Text PDFMammalian mitochondrial C(1)-tetrahydrofolate (THF) synthase (MTHFDIL gene product) is a monofunctional 10-formyl-THF synthetase, lacking the 5,10-methylene-THF dehydrogenase and 5,10-methenyl-THF cyclohydrolase activities typically found in the trifunctional cytoplasmic proteins. Here, we report the submitochondrial localization of epitope-tagged human mitochondrial C(1)-THF synthase expressed in Chinese hamster ovary cells. Mitochondrial fractionation experiments show that human mitochondrial C(1)-THF synthase behaves as a peripheral membrane protein, tightly associated with the matrix side of the mitochondrial inner membrane.
View Article and Find Full Text PDFC1-tetrahydrofolate (THF) synthase is a trifunctional enzyme found in eukaryotes that contains the activities 10-formyl-THF synthetase, 5,10-methenyl-THF cyclohydrolase, and 5,10-methylene-THF dehydrogenase. The cytoplasmic isozyme of C1-THF synthase is well characterized in a number of mammals, including humans; but a mitochondrial isozyme has been previously identified only in the yeast Saccharomyces. Here, we report the identification and characterization of the human gene encoding a functional mitochondrial C1-THF synthase.
View Article and Find Full Text PDF