Publications by authors named "Prives J"

We report a method for studying postsynaptic membrane assembly utilizing the replating of aneural cultures of differentiated skeletal muscle cells onto laminin-coated surfaces. A significant limitation to the current cell culturebased approaches has been their inability to recapitulate the multistage surface acetylcholine receptor (AChR) redistribution events that produce complex AChR clusters found at the intact neuromuscular junction (NMJ). By taking advantage of the ability of substrate laminin to induce advanced maturation of AChR aggregates on the surface of myotubes, we have developed a secondary-plating method that allows more precise analysis of the signaling events connecting substrate laminin stimulation to complex AChR cluster formation.

View Article and Find Full Text PDF

During neuromuscular junction formation, extracellular matrix-mediated signals cause muscle surface acetylcholine receptors (AChRs) to aggregate at synaptic sites. Two extracellular matrix proteins, agrin and laminin, have each been shown to initiate signaling pathways that culminate in AChR clustering in cultured muscle cells. Here we present evidence that laminin-induced AChR clustering is mediated by the activation of the Rho GTPases Cdc42, Rac and Rho.

View Article and Find Full Text PDF

A key aspect of neuromuscular synapse formation is the clustering of muscle acetylcholine receptors (AChR) at synaptic sites in response to neurally secreted agrin. Agrin-induced AChR clustering in cultured myotubes proceeds via the initial formation of small microclusters, which then aggregate to form AChR clusters. Here we show that the coupling of agrin signaling to AChR clustering is dependent on the coordinated activities of Rac and Rho GTPases.

View Article and Find Full Text PDF

Here, we investigated the role of the small Rho GTPases Rac, Cdc42, and Rho in the mechanism of laminin-1-mediated neurite outgrowth in PC12 cells. PC12 cells were transfected with plasmids expressing wild-type and dominant-negative mutants of Rac (RacN17), Cdc42 (Cdc42N17), or Rho (RhoN19). Over 90% of the dominant-negative Rho- and Rac-transfected cells extended neurites when plated on laminin-1; however, none of the PC12 cells transfected with the dominant-negative Cdc42 mutant extended neurites.

View Article and Find Full Text PDF

During neuromuscular junction formation, agrin secreted from motor neurons causes muscle cell surface acetylcholine receptors (AChRs) to cluster at synaptic sites by mechanisms that are insufficiently understood. The Rho family of small guanosine triphosphatases (GTPases), including Rac and Cdc42, can mediate focal reorganization of the cell periphery in response to extracellular signals. Here, we investigated the role of Rac and Cdc42 in coupling agrin signaling to AChR clustering.

View Article and Find Full Text PDF

The innervation of embryonic skeletal muscle cells is marked by the redistribution of nicotinic acetylcholine receptors (AChRs) on muscle surface membranes into high-density patches at nerve-muscle contacts. To investigate the role of protein phosphorylation pathways in the regulation of AChR surface distribution, we have identified the sites on AChR delta-subunits that undergo phosphorylation associated with AChR cluster dispersal in cultured myotubes. We found that PKC-catalyzed AChR phosphorylation is targeted to Ser378, Ser393, and Ser450, all located in the major intracellular domain of the AChR delta-subunit.

View Article and Find Full Text PDF

The muscle-type nicotinic acetylcholine receptor (AChR)2 is a pentameric membrane ion channel assembled in the endoplasmic reticulum from four homologous subunits by mechanisms that are insufficiently understood. Nascent AChR subunits were recently found to form complexes with the endoplasmic reticulum-resident molecular chaperone calnexin. To determine the contribution of this interaction to AChR assembly and surface expression, we have now used transient transfection of mouse AChR subunits and calnexin into non-muscle cells.

View Article and Find Full Text PDF

In this study we have used cultured muscle cells to investigate the role of disulfide bond formation in the sequence of molecular events leading to nicotinic acetylcholine receptor (AChR) assembly and surface expression. We have observed that disulfide bond formation in newly synthesized AChR alpha-subunits occurs 5-20 min after translation and that this modification can be blocked by dithiothreitol (DTT), a membrane-permeant thiol-reducing agent. DTT treatment was found to arrest AChR alpha-subunit conformational maturation, assembly, and appearance on the cell surface, showing that these events are dependent on prior formation of disulfide bonds.

View Article and Find Full Text PDF

The nicotinic acetylcholine receptor (AChR) is a pentameric complex assembled from four different gene products by mechanisms that are inadequately understood. In this study we investigated the role of the endoplasmic reticulum (ER)-resident molecular chaperone calnexin in AChR subunit folding and assembly. We have shown that calnexin interacts with nascent AChR alpha-subunits (AChR-alpha) in muscle cell cultures and in COS cells transfected with mouse AChR-alpha.

View Article and Find Full Text PDF

Studies utilizing cultured muscle cells have shown that myoblast fusion requires extracellular Ca2+ and involves transient coordinated changes in cell membrane topography and cytoskeletal organization. However, neither the mechanisms by which Ca2+ influences these changes nor its cellular sites of action are known. We have investigated the effects of Ca2+ channel modulators and phorbol esters on fusion of embryonic chick myoblasts in culture.

View Article and Find Full Text PDF

We have investigated the mechanisms regulating the clustering of nicotinic acetylcholine receptor (AChR) on the surface of cultured embryonic chick muscle cells. Treatment of these cells with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), a potent activator of protein kinase C, was found to cause a rapid dispersal of AChR clusters, as monitored by fluorescence microscopy of cells labeled with tetramethylrhodamine-conjugated alpha-bungarotoxin. The loss of AChR clusters was not accompanied by an appreciable change in the amount of AChR on the surface of these cells, as measured by the specific binding of [125I]Bgt.

View Article and Find Full Text PDF

The assembly of the nicotinic acetylcholine receptor (AChR), an oligomeric cell surface protein, was studied in cultured muscle cells. To measure this process, the incorporation of metabolically labeled alpha-subunit into oligomeric AChR was monitored in pulse-chase experiments, either by the shift of this subunit from the unassembled (5 S) to the assembled (9 S) position in sucrose density gradients, or by its coprecipitation with antisera specific for the delta-subunit. We have found that AChR assembly is initiated 15-30 min after subunit biosynthesis and is completed within the next 60 min.

View Article and Find Full Text PDF

We have investigated the possibility that cellular control of membrane excitability involves feedback mechanisms in which the degree of activity of voltage-sensitive Na+ channels regulates the number of these channels. Using two independent assays, channel-mediated Na+ uptake and the specific binding of [3H] saxitoxin, we have studied the effects of pharmacological activation of Na+ channels with batrachotoxin (BTX) on the number and properties of these channels. Upon exposure of cultured muscle cells to BTX (1 microM), the number of surface Na+ channels decreases by approximately 75%, with a half-time of 3-6 h.

View Article and Find Full Text PDF

We investigated the effect of trifluoperazine (TFP), a calmodulin antagonist, on the fusion of chick skeletal myoblasts in culture. TFP was found to inhibit myoblast fusion. This effect occurs at concentrations that have been reported to inhibit Ca2+-calmodulin in vitro, and is reversed upon removal of TFP.

View Article and Find Full Text PDF

The expression of Na+ channels during differentiation of cultured embryonic chick skeletal muscle cells was investigated using saxitoxin (STX) and batrachotoxin (BTX), which previously have been shown to interact with distinct, separate receptor sites of the voltage-sensitive Na+ channel of excitable cells. In the present study, parallel measurements of binding of [3H]-STX (STX) and of BTX-activated 22Na+ uptake (Na influx) were made in order to establish the temporal relationship of the appearance of these two Na+ channel activities during myogenesis. Na influx was clearly measurable in 2-d cells; from day 3 to day 7 the maximum Na influx approximately doubled when measured with saturating BTX concentrations potentiated by Leiurus scorpion toxin, while the apparent affinity of BTX, measured without scorpion toxin, also increased.

View Article and Find Full Text PDF

We have studied the effect of tunicamycin (TM), an antibiotic which inhibits the glycosylation of nascent proteins, on the properties of the acetylcholine receptor (AChR) at the surface of embryonic chick skeletal muscle cells. The use of two separate assays, specific binding of 125I-alpha-bungarotoxin and carbamylcholine-activated 22Na+ uptake, has allowed us to monitor the effects of impaired glycosylation on the metabolic and functional properties of AChR. A significant decrease in the amounts of surface AChR elaborated in the presence of TM is detected by both measurements.

View Article and Find Full Text PDF

We have investigated the effect of tunicamycin (TM), an inhibitor of protein glycosylation, on surface Na+ channels in cultured chick skeletal muscle cells. The expression of Na+ channels, estimated by the measurement of batrachotoxin (BTX)-activated 22Na+ uptake, was found to be significantly diminished after exposure of muscle cells to TM. This effect is partially reversed by the protease inhibitor leupeptin and is associated with a markedly enhanced rate of disappearance of Na+ channels from the surface of TM-treated cells.

View Article and Find Full Text PDF

To monitor the interaction of cell surface acetylcholine (AcCho) receptors with the cytoskeleton, cultured muscle cells were labeled with radioactive or fluorescent alpha-bungarotoxin and extracted with Triton X-100, using conditions that preserve internal structure. A significant population of the AcCho receptors is retained on the skeletal framework remaining after detergent extraction. The skeleton organization responsible for restricting AcCho receptors to a patched region may also result in their retention after detergent extraction.

View Article and Find Full Text PDF

The skeletal framework of cells, composed of internal structural fibers, microtrabeculae, and the surface lamina, is revealed with great clarity after extraction with detergent. When muscle cells fuse to form a multinucleated myotube, their skeletal framework reorganizes extensively. When myoblasts prepare to fuse, the previously continuous surface lamina develops numerous lacunae unique to this stage.

View Article and Find Full Text PDF

We have investigated the significance of protein glycosylation for metabolism of acetylcholine receptors (AcChoR) in primary cultures of embryonic chicken muscle cells. Tunicamycin, a specific inhibitor of the glycosylation of asparagine residues on glycoproteins, decreased AcChoR accumulation and accelerated its degradation. In contrast, there was no evidence that tunicamycin treatment affected AcChoR biosynthesis, intracellular transport, or incorporation into surface membranes.

View Article and Find Full Text PDF

During synchronous differentiation of embryonic chick muscle cells in cultures, the Na-dependent uptake of an amino acid analog, alpha-amino isobutyric acid (AIB) undergoes in abrupt, transient increase. The increase in AIB uptake is concomitant with the rapid fusion of mononucleated myoblasts, and precedes the accumulation of muscle-specific proteins. Subsequently, Na-dependent AIB transport diminishes markedly during postfusional differentiation of myotubes.

View Article and Find Full Text PDF

Newly fused chick myotubes undergo simultaneous and rapid changes in cell membrane properties during synchronous differentiation in culture. These changes are coordinately regulated and include increases in acetylcholine receptor, acetylcholinesterase, and resting potential, as well as the appearance of action potentials in discrete membrane areas upon stimulation. Subsequently, the acetylcholine receptor reaches maximal levels, whereas the development of electrical properties is marked by a further increase in resting potential, changes in the characteristics of the elicited action potential, and the recruitment of additional membrane areas for action potential generation.

View Article and Find Full Text PDF

During differentiation of embryonic chick skeletal muscle in culture, elaboration of acetylcholine receptor (AChR) and acetylcholinesterase occurs shortly after myoblast fusion. During further development, AChR was found to decrease markedly on the myotube surface, while acetylcholinesterase continued to increase. Surface distribution of AChR, as followed by autoradiography using 125I-alpha-bungarotoxin, was homogeneous in newly fused myotubes.

View Article and Find Full Text PDF