Publications by authors named "Pritmohinder Gill"

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder, with mutations in hundreds of genes contributing to its risk. Herein, we studied lymphoblastoid cell lines (LCLs) from children diagnosed with autistic disorder ( = 10) and controls ( = 7) using RNA and miRNA sequencing profiles. The sequencing analysis identified 1700 genes and 102 miRNAs differentially expressed between the ASD and control LCLs ( ≤ 0.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) comprises a heterogeneous group of neurodevelopmental disorders and occurs in all racial, ethnic, and socioeconomic groups. Cutting-edge technologies are contributing to understanding genetic underpinnings in ASD. The reported patient is a 32-year-old male and as an infant was noted to have microcephaly, hypospadias, pulmonary vascular anomaly, and small stature.

View Article and Find Full Text PDF

Neurodevelopmental disorders have steadily increased in incidence in the United States. Over the past decade, there have been significant changes in clinical diagnoses and treatments some of which are due to the increasing adoption of pharmacogenomics (PGx) by clinicians. In this pilot study, a multidisciplinary team at the Arkansas Children's Hospital North West consulted on 27 patients referred for difficult-to-manage neurodevelopmental and/or neurobehavioral disorders.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) are important regulators of molecular pathways in psychiatric disease. Here, we examine differential miRNAs expression in lymphoblastoid cell lines (LCLs) derived from 10 individuals with autism spectrum disorder (ASD) and compare them to seven typically developing unrelated age- and gender-matched controls and 10 typically developing siblings. Small RNAseq analysis identified miRNAs, and selected miRNAs were validated using quantitative real-time polymerase reaction (qRT-PCR).

View Article and Find Full Text PDF

Autism Spectrum Disorder (ASD) comprises a heterogeneous group of neurodevelopmental disorders with a strong heritable genetic component. At present, ASD is diagnosed solely by behavioral criteria. Advances in genomic analysis have contributed to numerous candidate genes for the risk of ASD, where rare mutations and s common variants contribute to its susceptibility.

View Article and Find Full Text PDF

Pharmacogenomics (PGx) is a growing field within precision medicine. Testing can help predict adverse events and sub-therapeutic response risks of certain medications. To date, the US FDA lists over 280 drugs which provide biomarker-based dosing guidance for adults and children.

View Article and Find Full Text PDF

Background And Aim: Hepatic phase I drug-metabolizing enzymes CYP2E1, CYP1A2 and CYP3A4 catalyze the biotransformation of Acetaminophen (APAP) and are important in the mediation of toxicity. The potential role of other hepatic and non-hepatic Phase I enzymes in APAP toxicity has not been established.

Methods: PCR array containing 84 genes involved in phase I drug metabolism was examined in subgroups of hospitalized children for APAP overdose, categorized as no toxicity (ALT ≤ 45 IU/L, n=5) and moderate toxicity (ALT ≥ 500 IU/L, n=5).

View Article and Find Full Text PDF

Epidemiologic studies have demonstrated an association between acetaminophen (APAP) use and the development of asthma symptoms. However, few studies have examined relationships between APAP-induced signaling pathways associated with the development of asthma symptoms. We tested the hypothesis that acute APAP exposure causes airway hyper-responsiveness (AHR) in human airways.

View Article and Find Full Text PDF

The prevalence of autism spectrum disorder (ASD) is high, yet the etiology of this disorder is still uncertain. Advancements in genetic analysis have provided the ability to identify potential genetic changes that may contribute to ASD. Interestingly, several genetic syndromes have been linked to metabolic dysfunction, suggesting an avenue for treatment.

View Article and Find Full Text PDF

Acetaminophen (APAP) overdose is the leading cause of acute liver failure. Yet the mechanisms underlying adaptive tolerance toward APAP-induced liver injury are not fully understood. To better understand molecular mechanisms contributing to adaptive tolerance to APAP is an underpinning foundation for APAP-related precision medicine.

View Article and Find Full Text PDF

Phospholipids are an important class of lipids that act as building blocks of biological cell membranes and participate in a variety of vital cellular functions including cell signaling. Previous studies have reported alterations in phosphatidylcholine (PC) and lysophosphatidylcholine (lysoPC) metabolism in acetaminophen (APAP)-treated animals or cell cultures. However, little is known about phospholipid perturbations in humans with APAP toxicity.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) that regulate the cytochrome P-450 isoforms involved in acetaminophen (APAP) toxicity were examined in HepaRG cells treated with APAP (20 mM). In-vitro studies found that APAP protein adducts were increased at 1 h, followed by ALT increases at 12 and 24 h. CYP1A2, CYP3A4 and CYP2E1 mRNA levels were decreased, while miRNAs were increased for miR-122-5p, miR-378a-5p, miR-27b-3p at 6 h and miR-125b-5p at 12 h and miR-27b-3p at 24 h.

View Article and Find Full Text PDF

Acetaminophen (APAP), a commonly used over-the-counter analgesic, accounts for approximately fifty percent of the cases of acute liver failure (ALF) in the United States due to overdose, with over half of those unintentional. Current clinical approaches for assessing APAP overdose rely on identifying the precise time of overdose and quantitating acetaminophen alanine aminotransferase (ALT) levels in peripheral blood. Novel specific and sensitive biomarkers may provide additional information regarding patient status post overdose.

View Article and Find Full Text PDF

Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen.

View Article and Find Full Text PDF

Acetaminophen (APAP) is a commonly used analgesic drug that can cause liver injury, liver necrosis and liver failure. APAP-induced liver injury is associated with glutathione depletion, the formation of APAP protein adducts, the generation of reactive oxygen and nitrogen species and mitochondrial injury. The systems biology omics technologies (transcriptomics, proteomics and metabolomics) have been used to discover potential translational biomarkers of liver injury.

View Article and Find Full Text PDF

Unlabelled: Developing biomarkers for detecting acetaminophen (APAP) toxicity has been widely investigated. Recent studies of adults with APAP-induced liver injury have reported human serum microRNA-122 (miR-122) as a novel biomarker of APAP-induced liver injury. The goal of this study was to examine extracellular microRNAs (miRNAs) as potential biomarkers for APAP liver injury in children.

View Article and Find Full Text PDF

Aim: Long-chain acylcarnitines have been postulated to be sensitive biomarkers of acetaminophen (APAP)-induced hepatotoxicity in mouse models. In the following study, the relationship of acylcarnitines with other known indicators of APAP toxicity was examined in children receiving low-dose (therapeutic) and high-dose ('overdose' or toxic ingestion) exposure to APAP.

Materials & Methods: The study included three subject groups: group A (therapeutic dose, n = 187); group B (healthy controls, n = 23); and group C (overdose, n = 62).

View Article and Find Full Text PDF

Proximal tubule reabsorption is regulated by systemic and intrinsic mechanisms, including locally produced autocoids. Superoxide, produced by NADPH oxidase enhances NaCl transport in the loop of Henle and the collecting duct, but its role in the proximal tubule is unclear. We measured proximal tubule fluid reabsorption (Jv) in WKY rats and compared that with Jv in the spontaneously hypertensive rat (SHR), a model of enhanced renal superoxide generation.

View Article and Find Full Text PDF

Background: Commercially available microarrays have been used in many settings to generate expression profiles for a variety of applications, including target selection for disease detection, classification, profiling for pharmacogenomic response to therapeutics, and potential disease staging. However, many commercially available microarray platforms fail to capture transcript diversity produced by alternative splicing, a major mechanism for driving proteomic diversity through transcript heterogeneity.

Results: The human Genome-Wide SpliceArray(TM) (GWSA), a novel microarray platform, utilizes an existing probe design concept to monitor such transcript diversity on a genome scale.

View Article and Find Full Text PDF

Adenosine mediates Na+ reabsorption in the proximal tubule (PT) and other segments by activating adenosine type 1 receptors (A1-AR). We tested the hypothesis that A1-AR in the PT is regulated by salt intake and participates in the kidney adaptation to changes in salt intake. Absolute fluid reabsorption (Jv) was measured by direct in vivo microperfusion and recollection in rats maintained on low (LS; 0.

View Article and Find Full Text PDF

Renal tubule epithelial cells express the insulin receptor (IR); however, their value has not been firmly established. We generated mice with renal epithelial cell-specific knockout of the IR by Cre-recombinase-loxP recombination using a kidney-specific (Ksp) cadherin promoter. KO mice expressed significantly lower levels of IR mRNA and protein in kidney cortex (49-56% of the WT) and medulla (32-47%) homogenates.

View Article and Find Full Text PDF

Asymmetric dimethylarginine (ADMA), which inhibits NO synthase, is inactivated by N(G),N(G)-dimethylarginine dimethylaminohydrolase (DDAH). We tested whether DDAH-1 or -2 regulates serum ADMA (S(ADMA)) and/or endothelium-derived relaxing factor (EDRF)/NO. Small inhibitory (si)RNAs targeting DDAH-1 or -2, or an siRNA control were given intravenously to rats.

View Article and Find Full Text PDF

Angiotensin II (ANG II) infusion increases renal superoxide (O(2)(-)) and enhances renal vasoconstriction via macula densa (MD) regulation of tubuloglomerular feedback, but the mechanism is unclear. We targeted the p22(phox) subunit of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) with small-interfering RNA (siRNA) to reduce NADPH oxidase activity and blood pressure response to ANG II in rats. We compared single nephron glomerular filtration rate (SNGFR) in samples collected from the proximal tubule (PT), which interrupts delivery to the MD, and from the distal tubule (DT), which maintains delivery to the MD, to assess MD regulation of GFR.

View Article and Find Full Text PDF

Low rates of angiotensin II (Ang II) infusion raise blood pressure, renal vascular resistance (RVR), NADPH oxidase activity, and superoxide. We tested the hypothesis that these effects are ameliorated by extracellular superoxide dismutase (EC-SOD). EC-SOD knockout (-/-) and wild type (+/+) mice were equipped with blood pressure telemeters and infused subcutaneously with Ang II (400 ng/kg per minute) or vehicle for 2 weeks.

View Article and Find Full Text PDF

NADPH oxidases have a distinct cellular localization in the kidney. Reactive oxygen species (ROS) are produced in the kidney by fibroblasts, endothelial cells (EC), vascular smooth muscle cells (VSMC), mesangial cells (MCs), tubular cells, and podocyte cells. All components of the phagocytic NADPH oxidase, as well as the Nox-1 and -4, are expressed in the kidney, with a prominent expression in renal vessels, glomeruli, and podocytes, and cells of the thick ascending limb of the loop of Henle (TAL), macula densa, distal tubules, collecting ducts, and cortical interstitial fibroblasts.

View Article and Find Full Text PDF