Publications by authors named "Pritika Narayan"

Using DNA methylation profiles ( = 15,456) from 348 mammalian species, we constructed phyloepigenetic trees that bear marked similarities to traditional phylogenetic ones. Using unsupervised clustering across all samples, we identified 55 distinct cytosine modules, of which 30 are related to traits such as maximum life span, adult weight, age, sex, and human mortality risk. Maximum life span is associated with methylation levels in subclass homeobox genes and developmental processes and is potentially regulated by pluripotency transcription factors.

View Article and Find Full Text PDF

Platelet-derived growth factor-BB (PDGF-BB):PDGF receptor-β (PDGFRβ) signalling in brain pericytes is critical to the development, maintenance and function of a healthy blood-brain barrier (BBB). Furthermore, BBB impairment and pericyte loss in Alzheimer's disease (AD) is well documented. We found that PDGF-BB:PDGFRβ signalling components were altered in human AD brains, with a marked reduction in vascular PDGFB.

View Article and Find Full Text PDF

In mammals, females generally live longer than males. Nevertheless, the mechanisms underpinning sex-dependent longevity are currently unclear. Epigenetic clocks are powerful biological biomarkers capable of precisely estimating chronological age and identifying novel factors influencing the aging rate using only DNA methylation data.

View Article and Find Full Text PDF

Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in exon 1 of the huntingtin gene. Emerging evidence shows that additional epigenetic factors can modify disease phenotypes. Harnessing the ability of the epigenome to modify the disease for therapeutic purposes is therefore of interest.

View Article and Find Full Text PDF

Although Huntington's disease (HD) is a well studied Mendelian genetic disorder, less is known about its associated epigenetic changes. Here, we characterize DNA methylation levels in six different tissues from 3 species: a mouse huntingtin (Htt) gene knock-in model, a transgenic HTT sheep model, and humans. Our epigenome-wide association study (EWAS) of human blood reveals that HD mutation status is significantly (p < 10) associated with 33 CpG sites, including the HTT gene (p = 6.

View Article and Find Full Text PDF

Background: Microglia play critical roles in the brain during homeostasis and pathological conditions. Understanding the molecular events underpinning microglial functions and activation states will further enable us to target these cells for the treatment of neurological disorders. The transcription factor PU.

View Article and Find Full Text PDF

Several dyes are currently available for use in detecting differentiation of mesenchymal cells into adipocytes. Dyes, such as Oil Red O, are cheap, easy to use and widely utilized by laboratories analyzing the adipogenic potential of mesenchymal cells. However, they are not specific to changes in gene transcription.

View Article and Find Full Text PDF

Substantial progress has been made in identifying Alzheimer's disease (AD) risk-associated variants using genome-wide association studies (GWAS). The majority of these risk variants reside in noncoding regions of the genome making their functional evaluation difficult; however, they also infer the presence of unconventional regulatory regions that may reside at these locations. We know from these studies that rare familial cases of AD account for less than 5% of all AD cases and autosomal dominant mutations in APP, PSEN1 and PSEN2 account for less than 10% of the genetic basis of these familial cases [1].

View Article and Find Full Text PDF

Background: Tissue microarrays are commonly used to evaluate disease pathology however methods to automate and quantify pathological changes are limited.

New Method: This article demonstrates the utility of the VSlide scanner (MetaSystems) for automated image acquisition from immunolabelled tissue microarray slides, and subsequent automated image analysis with MetaXpress (Molecular Devices) software to obtain objective, efficient and reproducible data from immunolabelled tissue microarray sections.

Results: Significant increases in fibrinogen immunolabelling were observed in 29 Alzheimer's disease cases compared to 28 control cases analysed from a single tissue microarray slide.

View Article and Find Full Text PDF

Histone acetylation is an epigenetic modification that plays a critical role in chromatin remodelling and transcriptional regulation. There is increasing evidence that epigenetic modifications may become compromised in aging and increase susceptibility to the development of neurodegenerative disorders such as Alzheimer's disease. Immunohistochemical labelling of free-floating sections from the inferior temporal gyrus (Alzheimer's disease, n=14; control, n=17) and paraffin-embedded tissue microarrays containing tissue from the middle temporal gyrus (Alzheimer's disease, n=29; control, n=28) demonstrated that acetyl histone H3 and acetyl histone H4 levels, as well as total histone H3 and total histone H4 protein levels, were significantly increased in post-mortem Alzheimer's disease brain tissue compared to age- and sex-matched neurologically normal control brain tissue.

View Article and Find Full Text PDF

There is increasing demand for automated image analysis of cell nuclei to be fast, objective and informative. Here, we have developed a high content analysis method for quantifying histone acetylation within any given population of cells. To demonstrate the utility of this method we quantified the effect of valproic acid (VPA) on histone H3 acetylation levels in SK-N-SH cells, a human neuroblastomal cell line.

View Article and Find Full Text PDF

Epigenetics is a rapidly growing field and holds great promise for a range of human diseases, including brain disorders such as Rett syndrome, anxiety and depressive disorders, schizophrenia, Alzheimer disease and Huntington disease. This review is concerned with the pharmacology of epigenetics to treat disorders of the epigenome whether induced developmentally or manifested/acquired later in life. In particular, we will focus on brain disorders and their treatment by drugs that modify the epigenome.

View Article and Find Full Text PDF

1. Receptor transport between intracellular compartments has important consequences for receptor function and is an exciting area of current study. Existing methods for studying receptor trafficking often require labour-intensive techniques or are difficult to quantify reliably.

View Article and Find Full Text PDF

Mutant protein aggregates are an important biomarker in Huntington's and other neurodegenerative diseases however their quantification has typically relied on manual imaging and counting, or cell-free assays, which do not allow for concurrent analysis of cell viability. Here we describe four automated high throughput image analysis methods, developed using Metamorph software, to quantify mutant huntingtin aggregates in a cellular context. Imaging of aggregate-forming cells was also automated, using a Discovery-1 automated fluorescence microscope.

View Article and Find Full Text PDF

A number of biochemical methods are available for measuring fat accumulation in cell culture. The authors report a simple image-based method for measuring fat accumulation in adipocytes using a combination of high-throughput brightfield microscopy and image analysis, which was validated biochemically using Oil-Red-O. The quickest and most accurate method of analysis was one based on thresholding brightfield images and determining the area of fat droplets per image.

View Article and Find Full Text PDF

Microglia and astrocytes play vital roles in normal human brain function and in neurological disorders. To study their physiological and pathological roles it is desirable to establish in vitro systems that are derived from the adult human brain. Although several groups have successfully cultured cells from the human brain, the composition of these cultures remains controversial.

View Article and Find Full Text PDF

Glial scar formation occurs after virtually any injury to the brain. The migration of astrocytes into regions of brain injury underlies the formation of the glial scar. The exact role of the glial scar has yet to be elucidated, although it is likely to impair brain recovery.

View Article and Find Full Text PDF

Automated image-based and biochemical assays have greatly increased throughput for quantifying cell numbers in in vitro studies. However, it has been more difficult to automate the counting of specific cell types with complex morphologies in mixed cell cultures. We have developed a fully automated, fast, accurate and objective method for the quantification of primary human GFAP-positive astrocytes and CD45-positive microglia from images of mixed cell populations.

View Article and Find Full Text PDF

Neuro2a cells endogenously express cannabinoid type 1 (CB1) receptors. CB1 stimulation with HU210 activated ERK and induced the transcription factor Krox-24. A functional MEK-ERK pathway is an important requirement for CB1-mediated Krox-24 induction as blockade of MEK signaling by UO126 reduces both basal and CB1-mediated activation of Krox-24.

View Article and Find Full Text PDF