We report thermally induced rapid phase separation in PS/PVME polymer blends using a unique contact free droplet based architecture. De-mixing of homogeneous blends due to inter component dynamic asymmetry is aggravated by the externally supplied heat. Separation of polymer blends is usually investigated in the bulk which is a tedious process and requires several hours for completion.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2016
In this study we have assessed, using dielectric relaxation spectroscopy (DRS), the confinement effects of the more mobile chain in partially miscible polymeric blends of PS/PVME (polystyrene/poly(vinyl methyl ether)) in the presence of anisotropically shaped MWCNTs (multiwalled carbon nanotubes). To understand if this confinement effect is very specific to MWCNTs, the characteristic dimensions of which are often close to the radius of gyration of the polymeric chains, a few other particles like spherical silver, stacked clay tactoids and platy graphene sheets at similar weight fractions were also incorporated and systematically studied. The DRS studies reveal that the more mobile chain (here PVME) experiences possibly two different environments in the presence of frozen PS and more importantly in the presence of MWCNTs at temperatures close to and not so far from the blend T.
View Article and Find Full Text PDFThe use of copolymer and polymer blends widened the possibility of creating materials with multilayered architectures. Hierarchical polymer systems with a wide array of micro and nanostructures are generated by thermally induced phase separation (TIPS) in partially miscible polymer blends. Various parameters like the interaction between the polymers, concentration, solvent/non-solvent ratio, and quenching temperature have to be optimized to obtain these micro/nanophase structures.
View Article and Find Full Text PDFThe demixing behavior, transient morphologies and mechanism of phase separation in PS/PVME blends were greatly altered in the presence of a very low concentration of rod-like particles (multiwall carbon nanotubes, MWNTs). This phenomenon is due to the specific interaction of one of the phases (PVME) with the anisotropic MWNTs, which creates a heterogeneous environment in the blend. This specific interaction alters the chain dynamics in the interfacial region as against the bulk.
View Article and Find Full Text PDFBlends of bromo-terminated polystyrene (PS-Br) and poly(vinyl methylether) (PVME) exhibit lower critical solution temperatures. In this study, PS-Br was designed by atom transfer radical polymerization and was converted to thiol-capped polystyrene (PS-SH) by reacting with thiourea. The silver nanoparticles (nAg) were then decorated with covalently bound PS-SH macromolecules to improve the phase miscibility in the PS-Br-PVME blends.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2014
The effect of silver nanoparticles (sNP) on the demixing and the evolution of morphology in off-critical blends of 90/10 and 10/90 (wt/wt) PS/PVME [polystyrene/poly(vinyl methyl ether)] was probed here using shear rheology and optical microscopy. The faster component (PVME) has a higher molecular weight (80 kDa) than the slower component (PS, 35 kDa), which makes this system quite interesting to study with respect to the evolving morphology, as the blends transit through the binodal and the spinodal envelopes. An unusual demixing behavior was observed in both PVME rich and PS rich blends.
View Article and Find Full Text PDFThe demixing of polystyrene (PS) and poly(vinyl methylether) (PVME) was systematically investigated in the presence of surface functionalized multiwall carbon nanotubes (MWNTs) by melt rheology. As PS-PVME blends are weakly interacting blends, the contribution of conformational entropy increases, resulting in thermo-rheological complexity wherein the concentration fluctuation persists even beyond the critical demixing temperature. These phenomenal changes were followed here in the presence of MWNTs with different surface functional groups.
View Article and Find Full Text PDFPhys Chem Chem Phys
May 2014
The present paper discusses the effect of multiwall carbon nanotubes (MWNTs) on the structural relaxation and the intermolecular cooperativity in dynamically asymmetric blends of PS/PVME (polystyrene/poly(vinyl methyl ether)). The temperature regime where chain connectivity effects dominate the thermodynamic concentration fluctuation (T/Tg > 0.75, Tg is the glass transition temperature of the blends) was studied using dielectric spectroscopy (DS).
View Article and Find Full Text PDFThe effect of silver nanoparticles (nAg) in PS/PVME [polystyrene/poly(vinyl methyl ether)] blends was studied with respect to the evolution of morphology, demixing temperature, and segmental dynamics. In the early stage of demixing, PVME developed an interconnected network that coarsened in the late stage. The nAg induced miscibility in the blends as supported by shear rheological measurements.
View Article and Find Full Text PDFThe effects of multiwalled carbon nanotubes (MWNTs) on the concentration fluctuations, interfacial driven elasticity, phase morphology, and local segmental dynamics of chains for near-critical compositions of polystyrene/poly(vinyl methyl ether) (PS/PVME) blends were systematically investigated using dynamic shear rheology and dielectric spectroscopy. The contribution of the correlation length (ξ) of the concentration fluctuations to the evolving stresses was monitored in situ to probe the different stages of demixing in the blends. The classical upturn in the dynamic moduli was taken as the rheological demixing temperature (T(rheo)), which was also observed to be in close agreement with those obtained using concentration fluctuation variance, <(δϕ)(2)>, versus temperature curves.
View Article and Find Full Text PDF