Effective manipulation of human disease processes may be achieved by understanding transcriptional, posttranscriptional and epigenetic events that orchestrate cellular events. The levels of activation of specific molecules, spatial distribution and concentrations of relevant networks of signaling molecules along with the receptiveness of the chromatin to these signals are some of the parameters which dictate context. Effects elicited by the transcription factor signal transducers and activator of transcription 3 (Stat3) are discussed with respect to the context within which Stat3-mediated effects are elicited within the developing and adult mammalian nervous system.
View Article and Find Full Text PDFAdipose tissue is an easily accessible and abundant source of stem cells. Adipose stem cells (ASCs) are currently being researched as treatment options for repair and regeneration of damaged tissues. The standard culture conditions used for expansion of ASCs contain fetal bovine serum (FBS) which is undefined, could transmit known and unknown adventitious agents, and may cause adverse immune reactions.
View Article and Find Full Text PDFPluripotent human embryonic stem (hES) cells are an important experimental tool for basic and applied research, and a potential source of different tissues for transplantation. However, one important challenge for the clinical use of these cells is the issue of immunocompatibility, which may be dealt with by the establishment of hES cell banks to attend different populations. Here we describe the derivation and characterization of a line of hES cells from the Brazilian population, named BR-1, in commercial defined medium.
View Article and Find Full Text PDFThe cancer stem cell hypothesis is an attractive framework within which one may think about cancer initiation, recurrence, and metastasis, and methods to devise treatment strategies for cancers. Although all cancers do not appear to sustain themselves with cancer stem cells, but also through a dominant cell population, creating strategies for cancer treatment which include cancer stem cells as targets seems reasonable. In this perspective we discuss possible strategies for controlling the viability and tumorigenecity of cancer stem cells, and extend our discussion to strategies approaching the prevention of cancer.
View Article and Find Full Text PDFAlthough the use of stem cells in cell-replacement therapies by transplantation is obvious, another equally important and interesting application of stem cells is to use them in disease modeling. Disease models serve as a platform to dissect the biochemical mechanisms of normal phenotypes and the processes which go awry during disease conditions. Particularly in complex, multigenic diseases, molecular studies lead to a greater understanding of the disease, and perhaps more targeted approaches for therapies.
View Article and Find Full Text PDFExtracellular signals dictate the biological processes of neural stem cells (NSCs) both in vivo and in vitro. The intracellular response elicited by these signals is dependent on the context in which the signal is received, which in turn is decided by previous and concurrent signals impinging on the cell. A synthesis of signaling pathways that control proliferation, survival, and differentiation of NSCs in vivo and in vitro will lead to a better understanding of their biology, and will also permit more precise and reproducible manipulation of these cells to particular end points.
View Article and Find Full Text PDFThe ability of stem cells to generate distinct fates is critical for the generation of cellular diversity during development. Central nervous system (CNS) stem cells respond to bone morphogenetic protein (BMP) 4 by differentiating into a wide variety of dorsal CNS and neural crest cell types. We show that distinct mechanisms are responsible for the generation of two of these cell types, smooth muscle and glia.
View Article and Find Full Text PDF