The aim of this study was to develop an age-appropriate tablet of mebendazole 500 mg to be used in large donation programs by the World Health Organization (WHO) for preventive chemotherapy of soil-transmitted helminth (STH) infections in pre-school and school-age children living in tropical and subtropical endemic areas. To that end, a new oral tablet formulation was developed that can be either chewed or given to young (≥1 year old) children by spoon after rapid disintegration to a soft mass with the addition of a small amount of water directly on the spoon. Although the tablet was manufactured using conventional fluid bed granulation, screening, blending, and compression processes, one of the main challenges was to combine properties of a chewable, dispersible, and regular (solid) immediate release tablet to meet the predefined requirements.
View Article and Find Full Text PDFElementary osmotic pumps (EOP) are well known for delivering moderately soluble drugs at a zero order rate. A push-pull osmotic system was developed and commercialized for poorly water-soluble drugs [Procardia XL (Nifedipine), Glucotrl XL (Glipizide)]. However, the technology is complex comprising of bilayer compression and the suspension of drug formed in the core has more viscosity and has to withstand the osmotic pressure within the tablet, for which the membrane must be thicker than that of EOP.
View Article and Find Full Text PDFThe aim of the current study was to design a porous osmotic pump-based drug delivery system for controlled release of oxybutynin. The porous osmotic pump contains pore-forming water-soluble additives in the coating membrane, which after coming in contact with water, dissolve, resulting in an in situ formation of a microporous structure. The dosage regimen of oxybutynin is one 5-mg tablet 2 to 3 times a day.
View Article and Find Full Text PDF