Publications by authors named "Priscille De Dumast"

Segmentation is a critical step in analyzing the developing human fetal brain. There have been vast improvements in automatic segmentation methods in the past several years, and the Fetal Brain Tissue Annotation (FeTA) Challenge 2021 helped to establish an excellent standard of fetal brain segmentation. However, FeTA 2021 was a single center study, limiting real-world clinical applicability and acceptance.

View Article and Find Full Text PDF

Objective: To assess the accuracy of corpus callosum (CC) biometry, including sub-segments, using 3D super-resolution fetal brain MRI (SR) compared to 2D or 3D ultrasound (US) and clinical low-resolution T2-weighted MRI (T2WS).

Method: Fetal brain biometry was conducted by two observers on 57 subjects [21-35 weeks of gestational age (GA)], including 11 cases of partial CC agenesis. Measures were performed by a junior observer (obs1) on US, T2WS and SR and by a senior neuroradiologist (obs2) on T2WS and SR.

View Article and Find Full Text PDF
Article Synopsis
  • In-utero fetal MRI is becoming a crucial method for diagnosing and analyzing the developing brain, but manually segmenting cerebral structures is slow and error-prone.
  • The Fetal Tissue Annotation (FeTA) Challenge was established in 2021 to promote the creation of automatic segmentation algorithms, utilizing a dataset with seven segmented fetal brain tissue types.
  • The challenge saw 20 international teams submit algorithms, primarily based on deep learning techniques like U-Nets, with one team's asymmetrical U-Net architecture significantly outperforming others, establishing a benchmark for future segmentation efforts.
View Article and Find Full Text PDF

Accurate characterization of in utero human brain maturation is critical as it involves complex and interconnected structural and functional processes that may influence health later in life. Magnetic resonance imaging is a powerful tool to investigate equivocal neurological patterns during fetal development. However, the number of acquisitions of satisfactory quality available in this cohort of sensitive subjects remains scarce, thus hindering the validation of advanced image processing techniques.

View Article and Find Full Text PDF

Fetal brain diffusion magnetic resonance images (MRI) are often acquired with a lower through-plane than in-plane resolution. This anisotropy is often overcome by classical upsampling methods such as linear or cubic interpolation. In this work, we employ an unsupervised learning algorithm using an autoencoder neural network for single-image through-plane super-resolution by leveraging a large amount of data.

View Article and Find Full Text PDF

We present the comparison of two-dimensional (2D) fetal brain biometry on magnetic resonance (MR) images using orthogonal 2D T2-weighted sequences (T2WSs) vs. one 3D super-resolution (SR) reconstructed volume and evaluation of the level of confidence and concordance between an experienced pediatric radiologist (obs1) and a junior radiologist (obs2). Twenty-five normal fetal brain MRI scans (18-34 weeks of gestation) including orthogonal 3-mm-thick T2WSs were analyzed retrospectively.

View Article and Find Full Text PDF

It is critical to quantitatively analyse the developing human fetal brain in order to fully understand neurodevelopment in both normal fetuses and those with congenital disorders. To facilitate this analysis, automatic multi-tissue fetal brain segmentation algorithms are needed, which in turn requires open datasets of segmented fetal brains. Here we introduce a publicly available dataset of 50 manually segmented pathological and non-pathological fetal magnetic resonance brain volume reconstructions across a range of gestational ages (20 to 33 weeks) into 7 different tissue categories (external cerebrospinal fluid, grey matter, white matter, ventricles, cerebellum, deep grey matter, brainstem/spinal cord).

View Article and Find Full Text PDF

We developed a deep learning neural network, the Shape Variation Analyzer (SVA), that allows disease staging of bony changes in temporomandibular joint (TMJ) osteoarthritis (OA). The sample was composed of 259 TMJ CBCT scans for the training set and 34 for the testing dataset. The 3D meshes had been previously classified in 6 groups by 2 expert clinicians.

View Article and Find Full Text PDF

Objective: The aim of this study was to assess the accuracy of volumetric reconstruction of the pharynx by comparing the volume and minimum crosssectional area (mCSA) determined with open-source applications (ITK-Snap, www.itksnap.org ; SlicerCMF) and commercial software (Dolphin3D, 11.

View Article and Find Full Text PDF

Temporo-mandibular osteo arthritis (TMJ OA) is characterized by progressive cartilage degradation and subchondral bone remodeling. The causes of this pathology remain unclear. Current research efforts are concentrated in finding new biomarkers that will help us understand disease progression and ultimately improve the treatment of the disease.

View Article and Find Full Text PDF

Objective: The purpose of this study is to describe the methodological innovations of a web-based system for storage, integration and computation of biomedical data, using a training imaging dataset to remotely compute a deep neural network classifier of temporomandibular joint osteoarthritis (TMJOA).

Methods: This study imaging dataset consisted of three-dimensional (3D) surface meshes of mandibular condyles constructed from cone beam computed tomography (CBCT) scans. The training dataset consisted of 259 condyles, 105 from control subjects and 154 from patients with diagnosis of TMJ OA.

View Article and Find Full Text PDF