Publications by authors named "Priscilla N I Lau"

Maintenance of quiescence and DNA replication dynamics are 2 paradoxical requirements for the distinct states of dormant and active hematopoietic stem cells (HSCs), which are required to preserve the stem cell reservoir and replenish the blood cell system in response to hematopoietic stress, respectively. Here, we show that key self-renewal factors, β-catenin or Hoxa9, largely dispensable for HSC integrity, in fact, have dual functions in maintaining quiescence and enabling efficient DNA replication fork dynamics to preserve the functionality of hematopoietic stem and progenitor cells (HSPCs). Although β-catenin or Hoxa9 single knockout (KO) exhibited mostly normal hematopoiesis, their coinactivation led to severe hematopoietic defects stemmed from aberrant cell cycle, DNA replication, and damage in HSPCs.

View Article and Find Full Text PDF

While β-catenin has been demonstrated as an essential molecule and therapeutic target for various cancer stem cells (CSCs) including those driven by MLL fusions, here we show that transcriptional memory from cells of origin predicts AML patient survival and allows β-catenin-independent transformation in MLL-CSCs derived from hematopoietic stem cell (HSC)-enriched LSK population but not myeloid-granulocyte progenitors. Mechanistically, β-catenin regulates expression of downstream targets of a key transcriptional memory gene, that is highly enriched in LSK-derived MLL-CSCs and helps sustain leukemic self-renewal. Suppression of sensitizes LSK-derived MLL-CSCs to β-catenin inhibition resulting in abolishment of CSC transcriptional program and transformation ability.

View Article and Find Full Text PDF

Histone post-translational modifications (PTMs) often form complex patterns of combinations and cooperate to specify downstream biological processes. In order to systemically analyse combinatorial PTMs and crosstalks among histone PTMs, we have developed a novel nucleosome purification method called Biotinylation-assisted Isolation of CO-modified Nucleosomes (BICON). This technique is based on physical coupling of the enzymatic activity of a histone-modifying enzyme with in vivo biotinylation by the biotin ligase BirA, and using streptavidin to purify the co-modified nucleosomes.

View Article and Find Full Text PDF

Histone H3 phosphorylation is a critical step that couples signal transduction pathways to gene regulation. To specifically assess the transcriptional regulatory functions of H3 phosphorylation, we developed an in vivo targeting approach and found that the H3 kinase MSK1 is a direct and potent transcriptional activator. Targeting of this H3 kinase to the endogenous c-fos promoter is sufficient to activate its expression without the need of upstream signaling.

View Article and Find Full Text PDF

H2A.Z is a histone H2A variant that is essential for viability in organisms such as Tetrahymena thermophila, Drosophila melanogaster, and mice. In Saccharomyces cerevisiae, loss of H2A.

View Article and Find Full Text PDF