Publications by authors named "Priscilla Masamba"

The African continent is vulnerable to food insecurity. Increased food costs, job losses, and climate change force Africans to chronic hunger. Biotechnology can be used to mitigate this by using techniques such as CRISPR/Cas9 systems, TALENs, and ZFNs.

View Article and Find Full Text PDF

Despite significant and coordinated efforts to combat schistosomiasis, such as providing clean water, sanitation, hygiene, and snail control, these strategies still fall short, as regions previously thought to be disease-free have shown active schistosomiasis transmission. Therefore, it is necessary to implement integrated control methods, emphasizing vaccine development for sustainable control of schistosomiasis. Vaccination has significantly contributed to global healthcare and has been the most economically friendly method for avoiding pathogenic infections.

View Article and Find Full Text PDF

Cancer is one of the most common and widely diagnosed diseases worldwide. With an increase in prevalence and incidence, many studies in cancer biology have been looking at the role pro-cancer proteins play. One of these proteins is the Really Interesting New Gene (RING), which has been studied extensively due to its structure and functions such as apoptosis, neddylation, and its role in ubiquitination.

View Article and Find Full Text PDF

Plants undergo metabolic perturbations under various abiotic stress conditions; due to their sessile nature, the metabolic network of plants requires continuous reconfigurations in response to environmental stimuli to maintain homeostasis and combat stress. The comprehensive analysis of these metabolic features will thus give an overview of plant metabolic responses and strategies applied to mitigate the deleterious effects of stress conditions at a biochemical level. In recent years, the adoption of metabolomics studies has gained significant attention due to the growing technological advances in analytical biochemistry (plant metabolomics).

View Article and Find Full Text PDF

Background: Targeting protein-protein interactions (PPIs) linked to protein quality control (PQC) pathways as potential anti-cancer drug targets have unanimously widened biological insights and the therapeutic potential of PPIs as smart-drug discovery tools in cancer. PPIs between disease-relevant proteins associated with protein homeostasis in PQC pathways have been linked to improved mechanistic understanding associated with conformational abnormalities and impairment, cellular proteotoxicity, induced apoptosis, and pathogenesis in different types of cancers. In this context, PPIs between small nuclear ribonucleoprotein polypeptide G (SNRPG) and heat shock protein 70.

View Article and Find Full Text PDF

The United Nations (UN) estimate that the global population will reach 10 billion people by 2050. These projections have placed the agroeconomic industry under immense pressure to meet the growing demand for food and maintain global food security. However, factors associated with climate variability and the emergence of virulent plant pathogens and pests pose a considerable threat to meeting these demands.

View Article and Find Full Text PDF

Universal stress protein (USP) from , designated as G4LZI3, waspreviously hypothesised as a druggable target and vaccine candidate for human schistosomiasis.The purpose of this study is to characterize a purified recombinant G4LZI3 preliminarily forsubsequent structural characterization, which will provide baseline structural data for futurefunctional studies for the discovery, design and development of new schistosomal drugs for thetreatment, control and elimination of schistosomiasis. Restriction digest analysis of a GenScript-synthesised codon-optimised G4LZI3gene construct was carried out to ascertain its integrity and size.

View Article and Find Full Text PDF

Human schistosomiasis is a disease that mostly plagues the destitute of various tropical and sub-tropical countries, particularly in sub-Saharan Africa (SSA) and South America. It has significant effects on various health and economic-related matters. Globally, the burden of schistosomiasis has been controlled with a single chemotherapeutic drug, praziquantel (PZQ), which has recently demonstrated several clinical issues, including its inability to destroy juvenile schistosome worms and drug resistance because of its extensive use.

View Article and Find Full Text PDF

Regulatory core-splicing proteins are now becoming highly promising therapeutic targets for the development of anti-cancer drugs. SNRPG and RBBP6 are two good examples of regulatory core-splicing proteins involved in tumorigenesis and tumor development whose multi-functional role is primarily mediated by protein-protein interactions. Over the years, skepticism abutting from the two onco-proteins has been mounting.

View Article and Find Full Text PDF

Universal stress proteins (USPs) were originally discovered in over two decades ago and since then their presence has been detected in various organisms that include plants, archaea, metazoans, and bacteria. As their name suggests, they function in a series of various cellular responses in both abiotic and biotic stressful conditions such as oxidative stress, exposure to DNA damaging agents, nutrient starvation, high temperature and acidic stress, among others. Although a highly conserved group of proteins, the molecular and biochemical aspects of their functions are largely evasive.

View Article and Find Full Text PDF

Proteins hardly function in isolation; they form complexes with other proteins or molecules to mediate cell signaling and control cellular processes in various organisms. Protein interactions control mechanisms that lead to normal and/or disease states. The use of competitive small molecule inhibitors to disrupt disease-relevant protein-protein interactions (PPIs) holds great promise for the development of new drugs.

View Article and Find Full Text PDF

The host-parasite schistosome relationship relies heavily on the interplay between the strategies imposed by the schistosome worm and the defense mechanisms the host uses to counter the line of attack of the parasite. The ultimate goal of the schistosome parasite entails five important steps: evade elimination tactics, survive within the human host, develop into adult forms, propagate in large numbers, and transmit from one host to the next. The aim of the parasitized host on the other hand is either to cure or limit infection.

View Article and Find Full Text PDF

Background: For decades, Praziquantel has been the undisputed drug of choice for all schistosome infections, but rising concerns due to the unelucidated mechanism of action of the drug and unavoidable reports of emerging drug resistant strains has necessitated the need for alternative treatment drug. Moreover, current apprehension has been reinforced by total dependence on the drug for treatment hence, the search for novel and effective anti-schistosomal drugs.

Methods: This study made use of bioinformatic tools to determine the structural binding of the Universal G4LZI3 Stress Protein (USP) in complex with ten polyphenol compounds, thereby highlighting the effectiveness of these recently identified 'lead' molecules in the design of novel therapeutics targeted against schistosomiasis.

View Article and Find Full Text PDF

Schistosome infection is regarded as one of the most important and neglected tropical diseases associated with poor sanitation. Like other living organisms, schistosomes employ multiple biological processes, of which some are regulated by a post-translational modification called Adenosine Diphosphate-ribosylation (ADP-ribosylation), catalyzed by ADP-ribosyltransferases. ADP-ribosylation is the addition of ADP-ribose moieties from Nicotinamide Adenine Dinucleotide (NAD+) to various targets, which include proteins and nucleotides.

View Article and Find Full Text PDF

Chlorotoxin (CTX) is a minute 4 kDa protein made up of 36 amino acid residues, commonly known for its binding affinity to chloride channels and matrix metalloproteinase-2 (MMP-2) of glioma tumors of the spine and brain. This property and the possibility of conjugating this peptide to nanoparticles have enabled its diverse use in various biotechnological and biomedical applications for cancer treatment, such as in tumor imaging and radiotherapy. Because of the fascinating biological properties CTX possesses, elucidating its mechanism of action may hold promise for the development of new and effective therapeutic drugs, as well as more sensitive and highly specific cancer-screening kits.

View Article and Find Full Text PDF

The historical relationship between cancer and inflammation has long been evaluated, and dates back to the early work of Virchow (1863), where he hypothesised that chronic inflammation as a direct cause of tissue injury and infection, could actually promote tissue proliferation. At that period in time however, the exact mechanisms that mediated this relationship were little understood. Subsequent studies have since then demonstrated that chronic inflammation plays significant roles in microenvironments, mostly in the progression of tumours, probably, through over-secretion of proinflammatory cytokines and other immune-killing apparatus such as reactive oxygen species (ROS) which cause damage to normal cells leading to DNA damage and increased cellular mutation rates.

View Article and Find Full Text PDF

Cancer and infectious diseases such as Ebola, HIV, tuberculosis, Zika, hepatitis, measles and human schistosomiasis are serious global health hazards. The increasing annual morbidities and mortalities of these diseases have been blamed on drug resistance and the inefficacy of available diagnostic tools, particularly those which are immunologically-based. Antibody-based tools rely solely on antibody production for diagnosis and for this reason they are the major cause of diagnostic delays.

View Article and Find Full Text PDF

Major histocompatibility complex class 1 chain-related gene sequence A is a polymorphic gene found at about 46.6 kb centromeric to HLA-B. It encodes a transmembrane protein, which is a non-classical human leukocyte antigen whose expression is normally induced by stress conditions like cancer and viral infections.

View Article and Find Full Text PDF

Heat shock proteins (HSPs) play cytoprotective activities under pathological conditions through the initiation of protein folding, repair, refolding of misfolded peptides, and possible degradation of irreparable proteins. Excessive apoptosis, resulting from increased reactive oxygen species (ROS) cellular levels and subsequent amplified inflammatory reactions, is well known in the pathogenesis and progression of several human inflammatory diseases (HIDs) and cancer. Under normal physiological conditions, ROS levels and inflammatory reactions are kept in check for the cellular benefits of fighting off infectious agents through antioxidant mechanisms; however, this balance can be disrupted under pathological conditions, thus leading to oxidative stress and massive cellular destruction.

View Article and Find Full Text PDF

In spite of various control measures and eradication methods that have been in progress, schistosomiasis still prevails as one of the most prevalent debilitating parasitic diseases, typically affecting the poor and the underprivileged that are predominantly concentrated in sub-Saharan Africa. The parasitic schistosome blood fluke responsible for causing the disease completes its complex developmental cycle in two hosts: humans and freshwater snails, where they physically undergo gross modifications to endure the different conditions associated with each host. Just like any other organism, the worm possesses mechanisms that help them respond to environmental insults.

View Article and Find Full Text PDF