Water Sci Technol
August 2023
Waterborne disease is a global health threat contributing to a high burden of diarrhoeal disease, and growing evidence indicates a prospective increase in incidence coinciding with the profound effects of climate change. A major causative agent of gastrointestinal disease is Cryptosporidium, a protozoan waterborne parasite identified in over 70 countries. Cryptosporidium is a cause of high disease morbidity in children and the immunocompromised with limited treatment options for patients at risk of severe illness.
View Article and Find Full Text PDFThe adsorptive stripping voltammetric detection of nickel and cobalt in water samples at metal film electrodes has been extensively studied. In this work, a novel, environmentally friendly, metal-free electrochemical probe was constructed for the ultra-trace determination of Ni in water samples by Adsorptive Cathodic Stripping Voltammetry (AdCSV). The electrochemical platform is based on the adsorptive accumulation of Ni ions directly onto a glassy carbon electrode (GCE) modified with dimethylglyoxime (DMG) as chelating agent and a Nafion-graphene (NGr) nanocomposite to enhance electrode sensitivity.
View Article and Find Full Text PDFSensors (Basel)
November 2016
A sensitive and reagentless electrochemical aptatoxisensor was developed on cobalt (II) salicylaldiimine metallodendrimer (SDD-Co(II)) doped with electro-synthesized silver nanoparticles (AgNPs) for microcystin-LR (L, l-leucine; R, l-arginine), or MC-LR, detection in the nanomolar range. The GCE|SDD-Co(II)|AgNPs aptatoxisensor was fabricated with 5' thiolated aptamer through self-assembly on the modified surface of the glassy carbon electrode (GCE) and the electronic response was measured using cyclic voltammetry (CV). Specific binding of MC-LR with the aptamer on GCE|SDD-Co(II)|AgNPs aptatoxisensor caused the formation of a complex that resulted in steric hindrance and electrostatic repulsion culminating in variation of the corresponding peak current of the electrochemical probe.
View Article and Find Full Text PDFThe work being reported is the first electrochemical sensor for tetrodotoxin (TTX). It was developed on a glassy carbon electrodes (C) that was modified with poly(4-styrenesolfonic acid)-doped polyaniline film (PANI/PSSA). An amine-end functionalized TTX-binding aptamer, 5'-NH₂-AAAAATTTCACACGGGTGCCTCGGCTGTCC-3' (NH₂-Apt), was grafted via covalent glutaraldehyde (glu) cross-linking.
View Article and Find Full Text PDFAn impedimetric immunosensor for fumonisins was developed based on poly(2,5-dimethoxyaniline)-multi-wall carbon nanotubes doped with palladium telluride quantum dots onto a glassy carbon surface. The composite was assembled by a layer-by-layer method to form a multilayer film of quantum dots (QDs) and poly(2,5-dimethoxyaniline)-multi-wall carbon nanotubes (PDMA-MWCNT). Preparation of the electrochemical immunosensor for fumonisins involved drop-coating of fumonisins antibody onto the composite modified glassy carbon electrode.
View Article and Find Full Text PDFA biosensor platform based on polyamic acid (PAA) is reported for oriented immobilization of biomolecules. PAA, a functionalized conducting polymer substrate that provides electrochemical detection and control of biospecific binding, was used to covalently attach biomolecules, resulting in a significant improvement in the detection sensitivity. The biosensor sensing elements comprise a layer of PAA antibody (or antigen) composite self-assembled onto gold (Au) electrode via N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) linking.
View Article and Find Full Text PDFA Nafion-Graphene (Nafion-G) nanocomposite solution in combination with an in situ plated mercury film electrode was used as a highly sensitive electrochemical platform for the determination of Zn(2+), Cd(2+), Pb(2+) and Cu(2+) in 0.1 M acetate buffer (pH 4.6) by square-wave anodic stripping voltammetry (SWASV).
View Article and Find Full Text PDFA novel electrochemical sensor for the detection of anthracene was prepared by modifying a glassy carbon electrode (GCE) with over-oxidized polypyrrole (PPyox) and Ag-Au (1:3) bimetallic nanoparticles (Ag-AuNPs). The composite electrode (PPyox/Ag-AuNPs/GCE) was prepared by potentiodynamic polymerization of pyrrole on GCE followed by its overoxidation in 0.1 M NaOH.
View Article and Find Full Text PDFThis paper describes the use of horseradish peroxidase (HRP) based biosensor for novel detection of glyphosate herbicide. The biosensor was prepared by electrochemically depositing poly(2,5-dimethoxyaniline) (PDMA) doped with poly(4-styrenesulfonic acid) (PSS) onto the surface of a gold electrode followed by electrostatic attachment of the enzyme HRP onto the PDMA-PSS composite film. Fourier transform infrared (FTIR) and UV-Vis spectrometry inferred that HRP was not denatured during its immobilization on PDMA-PSS composite film.
View Article and Find Full Text PDFA novel enzyme immobilization platform was prepared on a platinum disk working electrode by polymerizing aniline inside the interstitial pores of polyester sulphonic acid sodium salt (PESA). Scanning electron microscopy study showed the formation of homogeneous sulphonated polyaniline (PANI) nanotubes (∼90 nm) and thermogravimetric analysis (TGA) confirmed that the nanotubes were stable up to 230 °C. The PANI:PESA nanocomposite showed a quasi-reversible redox behaviour in phosphate buffer saline.
View Article and Find Full Text PDFAn aflatoxin B₁ (AFB₁) electrochemical immunosensor was developed by the immobilisation of aflatoxin B₁-bovine serum albumin (AFB₁-BSA) conjugate on a polythionine (PTH)/gold nanoparticles (AuNP)-modified glassy carbon electrode (GCE). The surface of the AFB₁-BSA conjugate was covered with horseradish peroxidase (HRP), in order to prevent non-specific binding of the immunosensors with ions in the test solution. The AFB₁ immunosensor exhibited a quasi-reversible electrochemistry as indicated by a cyclic voltammetric (CV) peak separation (ΔE) value of 62 mV.
View Article and Find Full Text PDFAflatoxins are a group of mycotoxins that have deleterious effects on humans and are produced during fungal infection of plants or plant products. An electrochemical immunosensor for the determination of aflatoxin B(1) (AFB(1)) was developed with AFB(1)antibody (AFB(1)-Ab) immobilized on Pt electrodes modified with polyaniline (PANi) and polystyrene sulphonic acid (PSSA). Impedimetric analysis shows that the electron transfer resistances of the Pt/PANi-PSSA electrode, the Pt/PANi-PSSA/AFB(1)-Ab immunosensor and Pt/PANi-PSSA/AFB(1)-Ab incubated in bovine serum albumin (BSA) were 0.
View Article and Find Full Text PDFThe behavior of an amperometric organic-phase biosensor consisting of a gold electrode modified first with a mercaptobenzothiazole self-assembled monolayer, followed by electropolymerization of polyaniline in which acetylcholinesterase as enzyme was immobilized, has been developed and evaluated for organophosphorous pesticide detection. The voltammetric results have shown that the formal potential shifts anodically as the Au/MBT/PANI/AChE/PVAc thick-film biosensor responded to acetylthiocholine substrate addition under anaerobic conditions in selected organic solvent media containing 2% v/v 0.05 M phosphate buffer, 0.
View Article and Find Full Text PDF