Plants have evolved different strategies to resist drought, of which the best understood is the abscisic acid (ABA)-induced closure of stomatal pores to reduce water loss by transpiration. The availability of useful promoters that allow for precise spatial and temporal control of gene expression in stomata is essential both for investigating stomatal regulation in model systems and for biotechnological applications in field crops. Previous work indicated that the regulatory region of the transcription factor AtMYB60 specifically drives gene expression in guard cells of Arabidopsis, although its activity is rapidly down-regulated by ABA.
View Article and Find Full Text PDFBackground: Under drought, plants accumulate the signaling hormone abscisic acid (ABA), which induces the rapid closure of stomatal pores to prevent water loss. This event is trigged by a series of signals produced inside guard cells which finally reduce their turgor. Many of these events are tightly regulated at the transcriptional level, including the control exerted by MYB proteins.
View Article and Find Full Text PDFPlant Signal Behav
September 2008
Preserving crop yield under drought stress is a major challenge for modern agriculture. To cope with the detrimental effects of water scarcity on crop productivity it is important to develop new plants with a more sustainable use of water and capable of higher performance under stress conditions. Transpiration through stomatal pores accounts for over 90% of water loss in land plants.
View Article and Find Full Text PDFWe employed a gene trap approach to identify genes expressed in stomatal guard cells of Arabidopsis thaliana. We examined patterns of reporter gene expression in approximately 20,000 gene trap lines, and recovered five lines with exclusive or preferential expression in stomata. The screen yielded two insertions in annotated genes, encoding the CYTOCHROME P450 86A2 (CYP86A2) mono-oxygenase, and the PLEIOTROPIC DRUG RESISTANCE 3 (AtPDR3) transporter.
View Article and Find Full Text PDFTwo soils of different contamination history were tested in slurry for their self-remediability towards mono-, di- and trisubstituted chlorophenols. The landfill soil showed poor ability in removing the compounds. Instead, the soil from the golf course, treated for many years with a 2,4,6-trichlorophenol derivative (Prochloraz), remediated different concentrations of the same 2,4,6TCP, 2,4-dichlorophenol and monochlorophenol isomers, singly and in mixtures, at varying degradation rates.
View Article and Find Full Text PDF