Dilatometric strain sensors (DSS) that work based on detection of volume change in microfluidic channels; i) are highly sensitive to biaxial strain, ii) can be fabricated using only soft and transparent materials, and iii) are easy to integrate with smart-phones. These features are especially attractive for contact lens based intraocular pressure (IOP) sensing applications. The inherent flow stabilization of the microfluidic systems is an additional advantage suitable for filtering out rapid fluctuations.
View Article and Find Full Text PDFWearable technologies have potential to transform healthcare by providing continuous measurements of physiological parameters. Sensors that passively monitor physiological pressure without using electronic components are ideal for wearable contact lenses because they are easy to interface with the cornea and the external environment. Here, we report a passive integrated microfluidic sensor with a novel transduction mechanism that converts small strain changes into a large fluidic volume expansion, detectable by a smart-phone camera.
View Article and Find Full Text PDF