Publications by authors named "Priscilla Declerck"

Exposure to ambient air pollution has been associated with various adverse health effects including respiratory, cardiovascular and neurological diseases. Exposure data for some specific pollutants and settings are however still insufficient and mechanisms underlying negative health outcomes are not fully elucidated. This pilot study aimed to assess individual exposure to three traffic-related air pollutants, black carbon (BC), polycyclic aromatic hydrocarbons (PAHs) and benzene, and the relationship with respiratory and oxidative stress outcomes in a cross-sectional sample of 48 green space workers in Brussels, Belgium.

View Article and Find Full Text PDF

Background: We investigated the associations between daily sales of respiratory medication and air pollutants in the Brussels-Capital Region between 2005 and 2011.

Methods: We used over-dispersed Poisson Generalized Linear Models to regress daily individual reimbursement data of prescribed asthma and COPD medication from the social security database against each subject's residential exposure to outdoor particulate matter (PM10) or NO2 estimated, by interpolation from monitoring stations. We calculated cumulative risk ratios (RR) and their 95% confidence intervals (CI) for interquartile ranges (IQR) of exposure for different windows of past exposure for the entire population and for seven age groups.

View Article and Find Full Text PDF

Despite more than a decade of worldwide research on membrane fouling in membrane bioreactors, many questions remain to be answered. Biofouling, which is referred to as the unwanted deposition and growth of biofilms, remains the main problem. Due to its complexity, most of the existing anti-biofouling strategies are not completely successful.

View Article and Find Full Text PDF

A home-built fiber optic surface plasmon resonance platform (FO-SPR) was applied to directly screen PCR amplified DNA for mutations. The FO-SPR sensor was used for real-time monitoring of DNA duplex melting during high resolution temperature cycling. The signal of the DNA melting was enhanced by means of gold nanoparticle labels.

View Article and Find Full Text PDF

Membrane biofouling was investigated during the early stages of filtration in a laboratory-scale membrane bioreactor operated on molasses wastewater. The bacterial diversity and composition of the membrane biofilm and activated sludge were analyzed using terminal restriction fragment length polymorphism coupled with 16S rRNA clone library construction and sequencing. The amount of extracellular polymeric substances produced by bacteria was investigated using spectroscopic methods.

View Article and Find Full Text PDF

Conventional submerged membrane bioreactors (MBRs) rely on the coarse bubbles aeration to generate shear at the liquid-membrane interface to limit membrane fouling. Unfortunately, it is a very energy consuming method, still often resulting in a rapid decrease of membrane permeability and consequently in higher expenses. In this paper, the feasibility of a novel magnetically induced membrane vibration (MMV) system was studied in a lab-scale MBR treating synthetic wastewater.

View Article and Find Full Text PDF

The effectiveness of three commercially available direct DNA isolation kits (Mobio, Fast, Qiagen) and one published direct DNA extraction protocol (Bead) for extracting bacterial DNA from different types of activated sludge was investigated and mutually compared. The DNA quantity and purity were determined using real-time PCR targeting the bacterial 16S rDNA gene. Microbial community fingerprints were assessed by automated ribosomal intergenic spacer analysis.

View Article and Find Full Text PDF

In this study, several process parameters that may contribute to the efficiency of ultrasound disinfection are examined on a pilot scale water disinfection system that mimics realistic circumstances as encountered in an industrial environment. The main parameters of sonication are: (i) power; (ii) duration of treatment; (iii) volume of the treated sample. The specific energy (E(s)) is an indicator of the intensity of the ultrasound treatment because it incorporates the transferred power, the duration of sonication and the treated volume.

View Article and Find Full Text PDF

The objectives of this study were to (1) examine the effect of power ultrasound on the viability of both Legionella pneumophila and Acanthamoeba castellanii trophozoites and cysts, (2) investigate if intracellular Legionella replication in trophozoites positively affects bacterial resistance to ultrasound and (3) study if Legionella renders viable but non-culturable (VBNC) due to ultrasound treatments. Using laboratory scale experiments, microorganisms were exposed for various time periods to power ultrasound at a frequency of 36 kHz and an ultrasound power setting of 50 and 100%. Due to a fast destruction, trophozoite hosts were not able to protect intracellular Legionella from eradication by ultrasound, in contrast to cysts.

View Article and Find Full Text PDF

Legionella pneumophila, the aetiological agent of 90% of legionellosis cases, is a common inhabitant of natural and anthropogenic freshwater environments, where it resides in biofilms. Biofilms are defined as complex, natural assemblages of microorganisms that involve a multitude of trophic interactions. A thorough knowledge and understanding of Legionella ecology in relation to biofilm communities is of primary importance in the search for innovative and effective control strategies to prevent the occurrence of disease cases.

View Article and Find Full Text PDF

Biofilms are a major source of human pathogenic Legionella pneumophila in aquatic systems. In this study, we investigated the capacity of L. pneumophila to colonize floating biofilms and the impact of Acanthamoeba castellanii on the replication of biofilm-associated Legionella.

View Article and Find Full Text PDF

Biofilms similar to those present in water distribution pipes of anthropogenic aquatic systems were simulated in a rotating annular reactor using a non-Legionella community consisting of Aeromonas hydrophila, Escherichia coli, Flavobacterium breve and Pseudomonas aeruginosa. The impact of this community and Acanthamoeba castellanii on the replication of Legionella pneumophila was investigated. Despite the presence of 10(7) non-Legionella bacteria, culture and real-time polymerase chain reaction (PCR) results clearly showed that biofilm-associated Legionella bacteria only increased after intracellular replication in A.

View Article and Find Full Text PDF

Floating biofilms develop at the water-air interface and harbor numerous microorganisms, some of which are human pathogens like Legionella pneumophila. The presence of Legionella spp. and especially L.

View Article and Find Full Text PDF

Free-living amoebae (FLA) are distributed ubiquitously in aquatic environments with increasing importance in hygienic, medical and ecological relationships to man. In this study, water samples from Belgian industrial cooling circuits were quantitatively surveyed for the presence of FLA. Isolated, thermotolerant amoebae were identified morphologically as well as using the following molecular methods: enzyme-linked immunosorbent assay and isoenzyme electrophoresis and PCR.

View Article and Find Full Text PDF

Real-time polymerase chain reaction melting curve analysis (MCA) allows differentiation of several free-living amoebae species. Distinctive characteristics were found for Naegleria fowleri, N. lovaniensis, N.

View Article and Find Full Text PDF

A fast and accurate duplex real-time PCR (qPCR) was developed to detect and quantify the human pathogenic amoeba Naegleria fowleri in water samples. In this study, primers and probe based on the Mp2Cl5 gene were designed to amplify and quantify N. fowleri DNA in a single duplex reaction.

View Article and Find Full Text PDF

The human pathogenic Legionella bacteria are found ubiquitously in natural and human-made aquatic environments as residents in biofilms, where close interactions with other microorganisms like protozoa are possible. Nosocomial legionellosis already has been linked frequently to Legionella-contaminated artificial water supplies. For this reason, a rapid and accurate detection and quantification of these bacteria in environmental and clinical samples, combined with more information about their behavior in complex microbial communities and diverse ecosystems, is of importance.

View Article and Find Full Text PDF

This study describes the development and evaluation of a specific Legionella pneumophila Taqman duplex real-time PCR (qPCR) for fast and reliable quantification of this human pathogen in suspected man-made water systems. The qPCR assay was 100% specific for all L. pneumophila serogroups 1-15 with a sensitivity of 60 genome units/l and an amplification efficiency of 98%.

View Article and Find Full Text PDF

In order to reduce the risks of Legionnaires' disease, caused by the bacterium Legionella pneumophila, disinfection of tap water systems contaminated with this bacterium is a necessity. This study investigates if electrochemical disinfection is able to eliminate such contamination. Hereto, water spiked with bacteria (10(4)CFU Escherichia coli or L.

View Article and Find Full Text PDF

The presence of high levels of Legionella pneumophila in man-made aquatic systems correlates with the incidence of nosocomial Legionnaires' disease. This requires a rapid, reliable, and sensitive quantification of L. pneumophila concentrations in suspected water systems.

View Article and Find Full Text PDF