Background: Deadwood decomposition is an essential ecological process in forest ecosystems, playing a key role in nutrient cycling and carbon sequestration by enriching soils with organic matter. This process is driven by diverse microbial communities encompassing specialized functions in breaking down organic matter, but the specific roles of individual microorganisms in this process are still not fully understood.
Results: Here, we characterized the deadwood microbiome in a natural mixed temperate forest in Central Europe using PacBio HiFi long-read sequencing and a genome-resolved transcriptomics approach in order to uncover key microbial contributors to wood decomposition.
This study aimed to determine the taxonomic status of a new group of bovine strains of the genus Acinetobacter characterized by the rare ability to grow at temperatures above 44 °C. Initially, 24 strains were isolated from cattle feces collected at 11 farms in Czechia in 2022, representing a tentative new species based on preliminary whole-cell MALDI-TOF MS identification and rpoB gene sequencing. Twelve strains encompassing the within-group diversity were studied in detail, including whole genome de novo sequencing.
View Article and Find Full Text PDFFomes fomentarius is a widespread, wood-rotting fungus of temperate, broadleaved forests. Although the fruiting bodies of F. fomentarius persist for multiple years, little is known about its associated microbiome or how these recalcitrant structures are ultimately decomposed.
View Article and Find Full Text PDFUnlabelled: The purpose was identify an association between meconium microbiome, extra-uterine growth restriction, and head circumference catch-up.
Materials And Methods: Prospective study with preterm infants born <33 weeks gestational age (GA), admitted at Neonatal Unit and attending the Follow-Up Preterm Program of a tertiary hospital. Excluded out born infants; presence of congenital malformations or genetic syndromes; congenital infections; HIV-positive mothers; and newborns whose parents or legal guardians did not authorize participation.
Background: Early-onset neonatal sepsis (EONS) remains one of the leading causes of morbidity and mortality related to premature birth, and its diagnosis remains difficult. Our goal was to evaluate the intestinal microbiota of the first meconium of preterm newborns and ascertain whether it is associated with clinical EONS.
Methods: In a controlled, prospective cohort study, samples of the first meconium of premature infants with a gestational age (GA) ≤32 weeks was obtained at Hospital de Clínicas de Porto Alegre and DNA was isolated from the samples.
Introduction: The gut microbiome has been related to several features present in Glycogen Storage Diseases (GSD) patients including obesity, inflammatory bowel disease (IBD) and liver disease.
Objectives: The primary objective of this study was to investigate associations between GSD and the gut microbiota.
Methods: Twenty-four GSD patients on treatment with uncooked cornstarch (UCCS), and 16 healthy controls had their faecal microbiota evaluated through 16S rRNA gene sequencing.
Background: Administering intravenous antibiotics during labor to women at risk for transmitting Group B Streptococcus (GBS) can prevent infections in newborns. However, the impact of intrapartum antibiotic prophylaxis on mothers' microbial community composition is largely unknown. We compared vaginal microbial composition in pregnant women experiencing preterm birth at ≤ 32 weeks gestation that received intrapartum antibiotic prophylaxis with that in controls.
View Article and Find Full Text PDFPhenylketonuria (PKU) is an inborn error of metabolism associated with high blood levels of phenylalanine (Phe). A Phe-restricted diet supplemented with L-amino acids is the main treatment strategy for this disease; if started early, most neurological abnormalities can be prevented. The healthy human gut contains trillions of commensal bacteria, often referred to as the gut microbiota.
View Article and Find Full Text PDF