Publications by authors named "Priscila S N De Oliveira"

Article Synopsis
  • Feed costs are crucial in cattle production, making up about 75% of variable expenses, so optimizing feed efficiency is important.
  • The study analyzed the effects of traditional corn and alternative by-product diets on 14 traits related to feed efficiency and methane emissions in 52 Nellore bulls, finding that the alternative diet had better outcomes in weight gain and lower methane emissions.
  • Genetic analysis revealed 487, 484, and 499 differentially expressed genes in the liver, muscle, and rumen respectively, showing that specific genes and their connections relate to the improved traits observed with the alternative diet.
View Article and Find Full Text PDF

Background: Ruminants harbor a complex microbial community within their gastrointestinal tract, which plays major roles in their health and physiology. Brazil is one of the largest producers of beef in the world and more than 90% of the beef cattle herds are composed of pure and crossbred Nelore (). Despite its importance to the Brazilian economy and human feeding, few studies have characterized the Nelore microbiome.

View Article and Find Full Text PDF

Feed-efficient cattle selection is among the most leading solutions to reduce cost for beef cattle production. However, technical difficulties in measuring feed efficiency traits had limited the application in livestock. Here, we performed a Bivariate Genome-Wide Association Study (Bi-GWAS) and presented candidate biological mechanisms underlying the association between feed efficiency and meat quality traits in a half-sibling design with 353 Nelore steers derived from 34 unrelated sires.

View Article and Find Full Text PDF

Animal feeding is a critical factor in increasing producer profitability. Improving feed efficiency can help reduce feeding costs and reduce the environmental impact of beef production. Candidate genes previously identified for this trait in differential gene expression studies (e.

View Article and Find Full Text PDF

The impact of extreme changes in weather patterns on the economy and human welfare is one of the biggest challenges our civilization faces. From anthropogenic contributions to climate change, reducing the impact of farming activities is a priority since it is responsible for up to 18% of global greenhouse gas emissions. To this end, we tested whether ruminal and stool microbiome components could be used as biomarkers for methane emission and feed efficiency in bovine by studying 52 Brazilian Nelore bulls belonging to two feed intervention treatment groups, that is, conventional and by-product-based diets.

View Article and Find Full Text PDF

Background: Beef tenderness is a complex trait of economic importance for the beef industry. Understanding the epigenetic mechanisms underlying this trait may help improve the accuracy of breeding programs. However, little is known about epigenetic effects on Bos taurus muscle and their implications in tenderness, and no studies have been conducted in Bos indicus.

View Article and Find Full Text PDF

The objective of this study was to evaluate high-concentrate diets and two energy sources on intake, performance and meat quality parameters of feedlot Nellore heifers. Twenty-eight heifers (200 ± 22.5 kg BW) were randomly assigned to four treatments in a 2×2 factorial arrangement: two concentrate levels (70 and 80%) and two energy sources (corn and corn germ meal).

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are key regulators of gene expression, potentially affecting several biological processes, whose function can be altered by sequence variation. Hence, the integration of single nucleotide polymorphisms (SNP) and miRNAs can explain individual differences in economic traits. To provide new insights into the effects of SNPs on miRNAs and their related target genes, we carried out a multi-omic analysis to identify SNPs in miRNA mature sequences (miR-SNPs) associated with fatty acid (FA) composition in the Nelore cattle.

View Article and Find Full Text PDF

Differences between the expression of the two alleles of a gene are known as allele-specific expression (ASE), a common event in the transcriptome of mammals. Despite ASE being a source of phenotypic variation, its occurrence and effects on genetic prediction of economically relevant traits are still unexplored in bovines. Furthermore, as ASE events are likely driven by cis-regulatory mutations, scanning them throughout the bovine genome represents a significant step to elucidate the mechanisms underlying gene expression regulation.

View Article and Find Full Text PDF

Feed efficiency helps to reduce environmental impacts from livestock production, improving beef cattle profitability. We identified potential biomarkers (hub genes) for feed efficiency, by applying co-expression analysis in RNA-Seq data from 180 Nelore steers. Six co-expression modules were associated with six feed efficiency-related traits (-value ≤ 0.

View Article and Find Full Text PDF

Background: The success of different species of ruminants in the colonization of a diverse range of environments is due to their ability to digest and absorb nutrients from cellulose, a complex polysaccharide found in leaves and grass. Ruminants rely on a complex and diverse microbial community, or microbiota, in a unique compartment known as the rumen to break down this polysaccharide. Changes in microbial populations of the rumen can affect the host's development, health, and productivity.

View Article and Find Full Text PDF

Fatty acid (FA) content affects the sensorial and nutritional value of meat and plays a significant role in biological processes such as adipogenesis and immune response. It is well known that, in beef, the main FAs associated with these biological processes are oleic acid (C18:1 cis9, OA) and conjugated linoleic acid (CLA-c9t11), which may have beneficial effects on metabolic diseases such as type 2 diabetes and obesity. Here, we performed differential expression and co-expression analyses, weighted gene co-expression network analysis (WGCNA) and partial correlation with information theory (PCIT), to uncover the complex interactions between miRNAs and mRNAs expressed in skeletal muscle associated with FA content.

View Article and Find Full Text PDF

Meat quality is a complex trait that is influenced by genetic and environmental factors, which includes mineral concentration. However, the association between mineral concentration and meat quality, and the specific molecular pathways underlying this association, are not well explored. We therefore analyzed gene expression as measured with RNA-seq in muscle of 194 Nelore steers for association with three meat quality traits (intramuscular fat, meat pH, and tenderness) and the concentration of 13 minerals (Ca, Cr, Co, Cu, Fe, K, Mg, Mn, Na, P, S, Se, and Zn).

View Article and Find Full Text PDF

Residual Feed Intake (RFI) is an economically relevant trait in beef cattle. Among the molecular regulatory mechanisms, microRNAs (miRNAs) are an important dimension in post-transcriptional regulation and have been associated with different biological pathways. Here, we performed differential miRNAs expression and weighted gene co-expression network analyses (WGCNA) to better understand the complex interactions between miRNAs and mRNAs expressed in bovine skeletal muscle and liver.

View Article and Find Full Text PDF

Iron (Fe) is an essential mineral for metabolism and plays a central role in a range of biochemical processes. Therefore, this study aimed to identify differentially expressed (DE) genes and metabolic pathways in Longissimus dorsi (LD) muscle from cattle with divergent iron content, as well as to investigate the likely role of these DE genes in biological processes underlying beef quality parameters. Samples for RNA extraction for sequencing and iron, copper, manganese, and zinc determination were collected from LD muscles at slaughter.

View Article and Find Full Text PDF

Background: Feed efficiency is jointly determined by productivity and feed requirements, both of which are economically relevant traits in beef cattle production systems. The objective of this study was to identify genes/QTLs associated with components of feed efficiency in Nelore cattle using Illumina BovineHD BeadChip (770 k SNP) genotypes from 593 Nelore steers. The traits analyzed included: average daily gain (ADG), dry matter intake (DMI), feed-conversion ratio (FCR), feed efficiency (FE), residual feed intake (RFI), maintenance efficiency (ME), efficiency of gain (EG), partial efficiency of growth (PEG) and relative growth rate (RGR).

View Article and Find Full Text PDF