Publications by authors named "Priscila M Salloum"

The fast technological advances of molecular tools have enabled us to uncover a new dimension hidden within parasites and their hosts: their microbiomes. Increasingly, parasitologists characterise host microbiome changes in the face of parasitic infections, revealing the potential of these microscopic fast-evolving entities to influence host-parasite interactions. However, most of the changes in host microbiomes seem to depend on the host and parasite species in question.

View Article and Find Full Text PDF

Parasite infections are increasingly reported to change the microbiome of the parasitized hosts, while parasites bring their own microbes to what can be a multi-dimensional interaction. For instance, a recent hypothesis suggests that the microbial communities harboured by parasites may play a role in the well-documented ability of many parasites to manipulate host phenotype, and explain why the degree to which host phenotype is altered varies among conspecific parasites. Here, we explored whether the microbiomes of both hosts and parasites are associated with variation in host manipulation by parasites.

View Article and Find Full Text PDF

The Anthropocene is seeing the human footprint rapidly spreading to all of Earth's ecosystems. The fast-changing biotic and abiotic conditions experienced by all organisms are exerting new and strong selective pressures, and there is a growing list of examples of human-induced evolution in response to anthropogenic impacts. No organism is exempt from these novel selective pressures.

View Article and Find Full Text PDF

Despite extensive research on avian vocal learning, we still lack a general understanding of how and when this ability evolved in birds. As the closest living relatives of the earliest Passeriformes, the New Zealand wrens (Acanthisitti) hold a key phylogenetic position for furthering our understanding of the evolution of vocal learning because they share a common ancestor with two vocal learners: oscines and parrots. However, the vocal learning abilities of New Zealand wrens remain unexplored.

View Article and Find Full Text PDF

The concept that microbes associated with macroorganisms evolve as a unit has swept evolutionary ecology. However, this idea is controversial due to factors such as imperfect vertical transmission of microbial lineages and high microbiome variability among conspecific individuals of the same population. Here, we tested several predictions regarding the microbiota of four trematodes (Galactosomum otepotiense, Philophthalmus attenuatus, Acanthoparyphium sp.

View Article and Find Full Text PDF

For parasites with complex multi-host life cycles, the facultative truncation of the cycle represents an adaptation to challenging conditions for transmission. However, why certain individuals are capable of abbreviating their life cycle while other conspecifics are not remains poorly understood. Here, we test whether conspecific trematodes that either follow the normal three-host life cycle or skip their final host by reproducing precociously (via progenesis) in an intermediate host differ in the composition of their microbiomes.

View Article and Find Full Text PDF

As the number of known and described parasite species grows every year, one might ask: how much do we actually know about these species beyond the fact they exist? For free-living taxa, research effort is biased toward a small subset of species based on their properties or human-centric factors. Here, using a large data set on over 2500 helminth parasite species described in the past two decades, we test the importance of several predictors on two measures of research effort: the number of times a species description is cited following its publication, and the number of times a species' name is mentioned in the scientific literature. Our analysis highlights some taxonomic biases: for instance, descriptions of acanthocephalans and nematodes tend to receive more citations than those of other helminths, and species of cestodes are less frequently mentioned in the literature than other helminths.

View Article and Find Full Text PDF

Experimental approaches are among the most powerful tools available to biologists, yet in many disciplines their results have been questioned due to an underrepresentation of female animal subjects. In parasitology, experiments are crucial to understand host-parasite interactions, parasite development, host immune responses, as well as the efficacy of different control methods. However, distinguishing between species-wide and sex-specific effects requires the balanced inclusion of both male and female hosts in experiments and the reporting of results for each sex separately.

View Article and Find Full Text PDF

Comparing divergence in quantitative traits and neutral molecular markers, such as QST-FST comparisons, provides a means to distinguish between natural selection and genetic drift as causes of population differentiation in complex polygenic traits. Onithochiton neglectus (Rochebrune, 1881) is a morphologically variable chiton endemic to New Zealand, with populations distributed over a broad latitudinal environmental gradient. In this species, the morphological variants cluster into 2 geographically separated shell shape groups, and the phenotypic variation in shell shape has been hypothesized to be adaptive.

View Article and Find Full Text PDF

Vector-borne diseases are among the greatest causes of human suffering globally. Several studies have linked climate change and increasing temperature with rises in vector abundance, and in the incidence and geographical distribution of diseases. The microbiome of vectors can have profound effects on how efficiently a vector sustains pathogen development and transmission.

View Article and Find Full Text PDF

Alterations in host phenotype induced by metazoan parasites are widespread in nature, yet the underlying mechanisms and the sources of intraspecific variation in the extent of those alterations remain poorly understood. In light of the microbiome revolution sweeping through ecology and evolutionary biology, we hypothesise that the composition of symbiotic microbial communities living within individual parasites influences the nature and extent of their effect on host phenotype. The interests of both the parasite and its symbionts are aligned through the latter's vertical transmission, favouring joint contributions to the manipulation of host phenotype.

View Article and Find Full Text PDF

Genetic adaptation to future environmental conditions is crucial to help species persist as the climate changes. Genome scans are powerful tools to understand adaptive landscapes, enabling us to correlate genetic diversity with environmental gradients while disentangling neutral from adaptive variation. However, low gene flow can lead to both local adaptation and highly structured populations, and is a major confounding factor for genome scans, resulting in an inflated number of candidate loci.

View Article and Find Full Text PDF