Publications by authors named "Priscila Giuseppe"

Lignin, a major plant cell wall component, has an important role in plant-defense mechanisms against pathogens and is a promising renewable carbon source to produce bio-based chemicals. However, our understanding of microbial metabolism is incomplete regarding certain lignin-related compounds like p-coumaryl and sinapyl alcohols. Here, we reveal peripheral pathways for the catabolism of the three main lignin precursors (p-coumaryl, coniferyl, and sinapyl alcohols) in the plant pathogen Xanthomonas citri.

View Article and Find Full Text PDF

Pathogenic bacteria can affect a variety of economically relevant crops causing losses in productivity, limiting commercialization and requiring phytosanitary measures. These plant pathogens exhibit high level of host and tissue specificity through multiple molecular strategies including several secretion systems, effector proteins, and a broad repertoire of carbohydrate-active enzymes (CAZymes). Many of these CAZymes act on the plant cell wall and storage carbohydrates, such as cellulose and starch, releasing products used as nutrients and modulators of transcriptional responses to support host colonization by mechanisms yet poorly understood.

View Article and Find Full Text PDF

Xanthomonas plant pathogens can infect hundreds of agricultural plants. These bacteria exploit sophisticated molecular strategies based on multiple secretion systems and their associated virulence factors to overcome the plant defenses, including the physical barrier imposed by the plant cell walls and the innate immune system. Xanthomonads are equipped with a broad and diverse repertoire of Carbohydrate-Active enZymes (CAZymes), which besides enabling the utilization of complex plant carbohydrates as carbon and energy source, can also play pivotal roles in virulence and bacterial lifestyle in the host.

View Article and Find Full Text PDF

Bifidobacteria are early colonizers of the human gut and play central roles in human health and metabolism. To thrive in this competitive niche, these bacteria evolved the capacity to use complex carbohydrates, including mammalian N-glycans. Herein, we elucidated pivotal biochemical steps involved in high-mannose N-glycan utilization by Bifidobacterium longum.

View Article and Find Full Text PDF

Although hydrothermal treatments for biomass fractionation have been vastly studied, their effect on the depolymerization of isolated lignins in terms of yield, composition, and compatibility of the produced lignin bio-oils with bioconversion is still poorly investigated. In this study, we evaluated the hydrothermal depolymerization of an β-O-4'-rich lignin extracted from sugarcane bagasse by alkaline fractionation, investigating the influence of temperature (200-350 °C), time (30-90 min), and solid-liquid ratio (1:10-1:50 m.v) on yield of bio-oils (up to 31 wt%) rich in monomers (light bio-oils).

View Article and Find Full Text PDF

Plant diseases are among the major causes of crop yield losses around the world. To confer disease resistance, conventional breeding relies on the deployment of single resistance (R) genes. However, this strategy has been easily overcome by constantly evolving pathogens.

View Article and Find Full Text PDF

Xyloglucans are highly substituted and recalcitrant polysaccharides found in the primary cell walls of vascular plants, acting as a barrier against pathogens. Here, we reveal that the diverse and economically relevant Xanthomonas bacteria are endowed with a xyloglucan depolymerization machinery that is linked to pathogenesis. Using the citrus canker pathogen as a model organism, we show that this system encompasses distinctive glycoside hydrolases, a modular xyloglucan acetylesterase and specific membrane transporters, demonstrating that plant-associated bacteria employ distinct molecular strategies from commensal gut bacteria to cope with xyloglucans.

View Article and Find Full Text PDF

The plant-specific class XI myosins (MyoXIs) play key roles at the molecular, cellular and tissue levels, engaging diverse adaptor proteins to transport cargoes along actin filaments. To recognize their cargoes, MyoXIs have a C-terminal globular tail domain (GTD) that is evolutionarily related to those of class V myosins (MyoVs) from animals and fungi. Despite recent advances in understanding the functional roles played by MyoXI in plants, the structure of its GTD, and therefore the molecular determinants for cargo selectivity and recognition, remain elusive.

View Article and Find Full Text PDF

Cold-adapted endo-β-1,4-glucanases hold great potential for industrial processes requiring high activity at mild temperatures such as in food processing and extraction of bioactive compounds from plants. Here, we identified and explored the specificity, mode of action, kinetic behavior, molecular structure and biotechnological application of a novel endo-β-1,4-glucanase (XacCel8) from the phytopathogen Xanthomonas citri subsp. citri.

View Article and Find Full Text PDF

Vertebrates usually have three class V myosin paralogues (MyoV) to control membrane trafficking in the actin-rich cell cortex, but their functional overlapping or differentiation through cargoes selectivity is yet only partially understood. In this work, we reveal that the globular tail domain of MyoVc binds to the active form of small GTPase Rab3A with nanomolar affinity, a feature shared with MyoVa but not with MyoVb. Using molecular docking analyses guided by chemical cross-linking restraints, we propose a model to explain how Rab3A selectively recognizes MyoVa and MyoVc via a distinct binding site from that used by Rab11A.

View Article and Find Full Text PDF

Myosin Va (MyoVa) is an actin-based molecular motor that plays key roles in the final stages of secretory pathways, including neurotransmitter release. Several studies have addressed how MyoVa coordinates the trafficking of secretory vesicles, but why this molecular motor is found in exosomes is still unclear. In this work, using a yeast two-hybrid screening system, we identified the direct interaction between the globular tail domain (GTD) of MyoVa and four protein components of exosomes: the WD repeat-containing protein 48 (WDR48), the cold shock domain-containing protein E1 (CSDE1), the tandem C2 domain-containing protein 1 (TC2N), and the enzyme spermine synthase (SMS).

View Article and Find Full Text PDF

Bifidobacteria represent one of the first colonizers of human gut microbiota, providing to this ecosystem better health and nutrition. To maintain a mutualistic relationship, they have enzymes to degrade and use complex carbohydrates non-digestible by their hosts. To succeed in the densely populated gut environment, they evolved molecular strategies that remain poorly understood.

View Article and Find Full Text PDF

Background: Arabinoxylan is an abundant polysaccharide in industrially relevant biomasses such as sugarcane, corn stover and grasses. However, the arabinofuranosyl di-substitutions that decorate the xylan backbone are recalcitrant to most known arabinofuranosidases (Abfs).

Results: In this work, we identified a novel GH51 Abf (Abf51) that forms trimers in solution and can cope efficiently with both mono- and di-substitutions at terminal or internal xylopyranosyl units of arabinoxylan.

View Article and Find Full Text PDF

MAF1 is the main RNA polymerase (Pol) III repressor that controls cell growth in eukaryotes. The Citrus ortholog, CsMAF1, was shown to restrict cell growth in citrus canker disease but its role in plant development and disease is still unclear. We solved the crystal structure of the globular core of CsMAF1, which reveals additional structural elements compared with the previously available structure of hMAF1, and explored the dynamics of its flexible regions not present in the structure.

View Article and Find Full Text PDF
Article Synopsis
  • Nucleoside diphosphate kinases (NDKs) are essential enzymes in trypanosomatids, playing a crucial role in parasite survival and presenting opportunities for drug development.
  • Researchers expressed and purified LmNDK from Leishmania major, tested inhibitors using thermal shift assays, and employed various techniques to understand how potential drugs interact with the enzyme.
  • The compound SU11652, an analog of Sunitinib, showed promise as an LmNDK inhibitor and had comparable anti-leishmanial effects to established treatments in cell studies, suggesting its potential as a basis for new drug designs against Leishmania.
View Article and Find Full Text PDF

parasites have evolved a number of strategies to cope with the harsh environmental changes during mammalian infection. One of these mechanisms involves the functional gain that allows mitochondrial 2-Cys peroxiredoxins to act as molecular chaperones when forming decamers. This function is critical for parasite infectivity in mammals, and its activation has been considered to be controlled exclusively by the enzyme redox state under physiological conditions.

View Article and Find Full Text PDF

Plant aldo-keto reductases of the AKR4C subfamily play key roles during stress and are attractive targets for developing stress-tolerant crops. However, these AKR4Cs show little to no activity with previously-envisioned sugar substrates. We hypothesized a structural basis for the distinctive cofactor binding and substrate specificity of these plant enzymes.

View Article and Find Full Text PDF
Article Synopsis
  • Psychrophilic enzymes have evolved through various molecular pathways, showcasing how life adapts to cold environments, which is crucial for biotechnological uses in low temperatures.
  • This study revealed that low temperatures led to mutations in the GH1 β-glucosidase from Exiguobacterium antarcticum B7 that altered the protein's surface, reduced salt bridges, and promoted a unique tetrameric arrangement, resulting in enhanced enzyme flexibility and activity.
  • The research indicates that while tetramerization improves enzyme function in cold conditions, it represents just one of many strategies for adaptation within the GH1 enzyme family, paving the way for engineered enzymes suitable for cold industrial applications.
View Article and Find Full Text PDF

Nucleoside diphosphate kinase (NDK) is a housekeeping enzyme that plays key roles in nucleotide recycling and homeostasis in trypanosomatids. Moreover, it is secreted by the intracellular parasite Leishmania to modulate the host response. These functions make NDK an attractive target for drug design and for studies aiming at a better understanding of the mechanisms mediating host-pathogen interactions.

View Article and Find Full Text PDF

2-Cys peroxiredoxins belonging to the Prx1 subfamily are Cys-based peroxidases that control the intracellular levels of H2O2 and seem to assume a chaperone function under oxidative stress conditions. The regulation of their peroxidase activity as well as the observed functional switch from peroxidase to chaperone involves changes in their quaternary structure. Multiple factors can modulate the oligomeric transitions of 2-Cys peroxiredoxins such as redox state, post-translational modifications, and pH.

View Article and Find Full Text PDF

Background: Nucleoside diphosphate kinase (NDK) is a housekeeping enzyme that plays key roles in nucleotide recycling and homeostasis in trypanosomatids. It is also secreted by the intracellular parasite Leishmania to modulate the host response. These functions make NDK an attractive target for drug design and for studies aiming at a better understanding of the mechanisms mediating host-pathogen interactions.

View Article and Find Full Text PDF

Product inhibition of β-glucosidases (BGs) by glucose is considered to be a limiting step in enzymatic technologies for plant-biomass saccharification. Remarkably, some β-glucosidases belonging to the GH1 family exhibit unusual properties, being tolerant to, or even stimulated by, high glucose concentrations. However, the structural basis for the glucose tolerance and stimulation of BGs is still elusive.

View Article and Find Full Text PDF

Myosin V (MyoV) motors have been implicated in the intracellular transport of diverse cargoes including vesicles, organelles, RNA-protein complexes, and regulatory proteins. Here, we have solved the cargo-binding domain (CBD) structures of the three human MyoV paralogs (Va, Vb, and Vc), revealing subtle structural changes that drive functional differentiation and a novel redox mechanism controlling the CBD dimerization process, which is unique for the MyoVc subclass. Moreover, the cargo- and motor-binding sites were structurally assigned, indicating the conservation of residues involved in the recognition of adaptors for peroxisome transport and providing high resolution insights into motor domain inhibition by CBD.

View Article and Find Full Text PDF

The hexameric purine nucleoside phosphorylase from Bacillus subtilis (BsPNP233) displays great potential to produce nucleoside analogues in industry and can be exploited in the development of new anti-tumor gene therapies. In order to provide structural basis for enzyme and substrates rational optimization, aiming at those applications, the present work shows a thorough and detailed structural description of the binding mode of substrates and nucleoside analogues to the active site of the hexameric BsPNP233. Here we report the crystal structure of BsPNP233 in the apo form and in complex with 11 ligands, including clinically relevant compounds.

View Article and Find Full Text PDF